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ABSTRACT
We present a method of control variates for calculating improved estimates for mean 
performance quantities of interest, , computed from Monte Carlo probabilistic 𝐸(𝑃𝑄𝐼)
simulations. An example of a PQI is the concentration of a contaminant at a particular 
location in a problem domain computed from simulations of transport in porous 
media. To simplify the presentation, the method is described in the setting of a one-
dimensional elliptical model problem involving a single uncertain parameter 
represented by a probability distribution. The approach can be easily implemented for 
more complex problems involving multiple uncertain parameters and in particular for 
application to probabilistic performance assessment of deep geologic nuclear waste 
repository systems. Numerical results indicate the method can produce estimates of 

 having superior accuracy on coarser meshes and reduce the required number 𝐸(𝑃𝑄𝐼)
of simulations needed to achieve an acceptable estimate.
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NOMENCLATURE

Cov covariance
DGR deep geologic (nuclear waste) repository
PA performance assessment
PQI performance quantity of interest
SNL Sandia National Laboratories
Var variance
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1. INTRODUCTION
Obtaining reliable performance predictions of natural and engineered systems is an important 
endeavor in many disciplines. Natural and engineered systems include deep geologic nuclear 
waste repositories, hydrocarbon reservoirs, nuclear power reactors, carbon sequestration 
operations, and the earth’s climate. In many natural systems, particularly deep geologic 
repository (DGR) systems for nuclear waste disposal, significant epistemic and aleatory 
uncertainties make reliable predictions challenging because of the difficulty in gathering required 
data, understanding subsurface processes and predicting future events. Data uncertainties are 
significant and arise because DGR systems can be km-scale and heterogeneous. Data are 
practicably accessible only at a relatively limited set of characterization borehole locations, at the 
repository or underground research facility if one is present, or derived from indirect methods 
such as geophysical methods.
There are different computational approaches in practice today for making complex system 
performance predictions in the presence of uncertainty. These approaches include perturbation-, 
stochastic differential equation-, and Monte Carlo-based methods. These methods have 
advantages and disadvantages depending on the structure of the problem being analyzed and the 
nature of its uncertainties. DGR systems are more amenable to Monte Carlo-based methods 
because these systems involve multiple coupled thermal, hydrological, mechanical, and chemical 
processes and numerous uncertainties. As examples, the 2008 Performance Assessment (PA) of 
the proposed Yucca Mountain repository included 9 primary coupled computational models and 
approximately 400 uncertain parameters [1]. The 1996 performance assessment of the Waste 
Isolation Pilot Plant included 9 primary computational models and approximately 60 uncertain 
parameters [2]. 
PA is the required regulatory approach for assessing DGR compliance with quantitative 
radiological safety criteria. Because PA simulations are used as a basis for making regulatory 
decisions regarding repository safety, it is important that the overall error and uncertainty in 
performance predictions be understood. Overall error and uncertainty arise from the following 
major modeling activities [1, 3]:

1. Selection of the mathematical models providing an abstraction of the physical processes 
and events of interest;

2. Identification of appropriate parameters and data defining the models;
3. Use of physical observations and measurements, including data from the literature, 

laboratory, and field to validate and calibrate the models;
4. Development of a computational model through discretization of the mathematical model 

and its implementation on a computer;
5. Identification of specific goals of PA simulations and the performance quantities of 

interest; and
6. Quantification of uncertainties in the predictions, including sensitivity analysis.

The first three activities are closely linked with model validation: “The process of determining if 
a mathematical model of a physical event represents the actual physical event with sufficient 
accuracy” [4]. The fourth activity is evaluated as an element of model verification: “The process 
of determining if a computational model obtained by discretizing a mathematical model of a 
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physical event represents the mathematical model with sufficient accuracy” [4]. Activities 5 and 
6 are linked with both verification and validation. We emphasize that all six activities are in 
general iterative and evolve in complexity as knowledge about a specific DGR site increases and 
the computational modeling capabilities mature.
We undertake the work presented herein within the context of these six activities. In particular, 
this work includes elements of activities 4, 5, and 6 and is an initial step towards formulating the 
assessment of numerical discretization error on system performance quantities of interest. This 
assessment will include both the error in a performance quantity of interest (PQI) due to errors in 
approximations to the governing equations (e.g., spatial and temporal discretization errors), and 
the effect of approximating uncertainty in input parameters (statistical error). In DGR systems, 
typical PQIs include, as examples, the time-dependent concentration of a radionuclide at a 
location in the host geosphere away from the DGR, and the peak temperature at the wall of a 
waste emplacement tunnel.
Prior theoretical research exists for simple systems demonstrating how to compute the individual 
contributions of spatial and temporal truncation error and Monte Carlo truncation error to the 
total error in predictive probabilistic simulations [5, 6]. A goal of our research is to extend and 
tailor this work for large-scale DGR simulations. As a first step we address the approximation of 
the expectation of a PQI, , from a Monte Carlo simulation and develop a control variate 𝐸(𝑃𝑄𝐼)
approach [6, 7] to reduce its variance, improve its accuracy, and reduce the required number of 
simulations needed to achieve an acceptable estimate. Our choice of the control variate approach 
is based on two factors. 
First, based on our past experience with DGR simulations, PQIs are strongly correlated to the 
random variable inputs to the simulations. Past sensitivity analyses bear this out but also indicate 
that a PQI is typically sensitive to a subset of the uncertain inputs. In the Yucca Mountain 
simulations noted previously it was found that PQIs were typically only strongly correlated to a 
few ( ) of the  uncertain parameters [8]. The control variate technique provides a simple < 5 ~400
variance reduction method once a sensitivity analysis has been completed and we have identified 
the uncertain variables highly correlated with the PQI. In this study we examine a simple case 
involving a one-dimensional elliptic differential equation with one random input variable and 
provide example results below. Importantly, the method straightforwardly extends to multiple 
random variables.
Second, we desired a variance reduction method that is a post-processing method and therefore 
non-intrusive to the probabilistic simulations. Multi-level Monte Carlo methods are post-
processing methods that have been developed in recent years for probabilistic simulations and 
uncertainty quantification [9, 10, and references therein]. These methods have been effectively 
applied to elliptic transport problems and require at least two levels of spatial resolution. Unlike 
the control variate method presented herein, these methods do not directly exploit the known 
characteristics of the uncertain random parameters.
This report is organized as follows. We first present a simple two-dimensional elliptic model 
problem that we use to describe the different numerical approximation errors and implementation 
of the control variate technique. We then present analytical and numerical results for a one-
dimensional problem. Two probability density functions are considered for a single random 
variable, a uniform distribution and a triangular distribution. Two appendices are included that 
present an example problem with an exact variance reduction and numerical results.
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1.1. Model Problem
Consider the following model problem in domain , a d-dimensional domain in , with Ω 𝑅𝑑

boundary ∂Ω

𝐿𝑢(𝑥) = 𝑓(𝑥)     𝑥 ∈ Ω (1a)

𝑢(𝑥) = 𝑢0        𝑥 ∈ Ω (1b)

,𝑢(𝑥) =  Γ          ∂Ω (1c)

where the solution  is a scalar quantity that is a function of spatial position  and  is a forcing 𝑢 𝑥 𝑓
function for . The operator  has the form𝑢 𝐿

.𝐿 =  ∇ ∙ [𝛽(𝑥)∇𝑢] ‒  ∇ ∙ [𝑣(𝑥)𝑢] (1d)

 is a linear differential spatial operator that contains imprecisely known (or uncertain) model 𝐿
parameters  and , where  and  are assumed to be independent and a scalar and diagonal 𝛽 𝑣 𝛽 𝑣

tensor, respectively. It is assumed  is strictly positive with , where  𝛽(𝑥) 0 < 𝛽(𝑥) < 𝛽𝑚𝑎𝑥 ∀ 𝑥 ∈ Ω 𝛽𝑚𝑎𝑥

is an upper bound.
The numerical solution to problem (1) can be written as

,𝑈 = 𝑔(𝜔) (2)

where we have dropped the variable  to simplify the notation,  represents the numerical model 𝑥 𝑔
implemented to solve (1) and  is used to denote model parameter fields . In this 𝜔 𝜔 = [𝛽(𝑥), 𝑣(𝑥)]
study, we use a Monte-Carlo sampling procedure to evaluate the uncertainty in  resulting from 𝑈
the uncertainty in model parameters  and to obtain the expected value and variance of . The 𝜔 𝑈

uncertainty in each of the elements  is characterized by distributions  and . Model 𝜔 = [𝛽, 𝑣] 𝐷𝛽 𝐷𝑣

predictions  are calculated for each Monte Carlo input sample 
𝑈 = [𝑈1(𝜔1),…,𝑈𝑁𝑅(𝜔𝑁𝑅

)]

 consistent with  and , where  is the number of sample input vectors and 
𝜔 = [𝜔1, … 𝜔𝑁𝑅

] 𝐷𝛽 𝐷𝑣 𝑁𝑅

hence the number of realizations of model predictions. The numerical solution  in general 𝑈
contains error contributions from both spatial discretization and temporal numerical 
approximations, and from the statistical Monte Carlo approximation.
The expected value of  is given by 𝑢(𝜔)

,
𝐸[𝑢(𝜔)] =  ∫

𝑆

𝑢(𝜔)𝑚(𝜔) 𝑑𝜔 (3)

where  represents the joint density function for  resulting from parameter input 𝑚(𝜔) 𝑢(𝜔)

distributions  and . The exact solution  in Equation (3) can be expressed in terms of the 𝐷𝛽 𝐷𝑣 𝑢
numerical solution  and associated spatial numerical error by introducing𝑈
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,𝑢(𝜔) = 𝑈(𝜔) +  𝑒ℎ(𝜔) (4)

hence

.
𝐸[𝑢(𝜔)] =  ∫

𝑆
[𝑈(𝜔) +  𝑒ℎ(𝜔)]𝑚(𝜔) 𝑑𝜔 (5)

Approximating the integral in (3) using a Monte Carlo method with  independent realizations, 𝑁𝑅

the expected value can then be written as

𝐸[𝑢(𝜔)] =  
1

𝑁𝑅
 

𝑁𝑅

∑
𝑗 = 1

𝑈(𝜔) +  𝑒𝑀𝐶[𝑈(𝜔)] + 𝐸[𝑒ℎ(𝜔)]

,= �̅�⌊𝑈(𝜔)⌋ +  𝑒𝑀𝐶[𝑈(𝜔)] + 𝐸[𝑒ℎ(𝜔)] (6)
where  is the error in the Monte Carlo approximation to the expectation of  in (5), 𝑒𝑀𝐶 𝑈(𝜔)
referred to herein as statistical error, and the last term is the spatial discretization error. 
The error in the expectation  is𝐸[𝑢(𝜔)]

. (7)𝜀 =  𝐸[𝑢(𝜔)] ‒  �̅�⌊𝑈(𝜔)⌋ = 𝑒𝑀𝐶(𝑈) +  𝐸[𝑒ℎ(𝜔)]

In this study we consider a simpler version of the model problem (1) to examine the 
characteristics of the control variate method and the statistical error term in (7). This 𝑒𝑀𝐶(𝑈) 

simpler version will include a limited set of cases where  is one dimensional,  is a Ω 𝛽
deterministic constant independent of , and  is an epistemic uncertain parameter independent of 𝑥 𝑣
. In a follow-on study we will examine both error terms in (7) in one- and two-dimensions.𝑥

The statistical error for the mean of the approximate solution  in (7) is bounded by𝑈

|𝑒𝑀𝐶(𝑆)| ≤  𝑒 ∗
𝑀𝐶 =  𝑧

1 ‒
𝛼
2

|𝑆|
𝑁𝑅

, (8a)

where S is the sample standard deviation 

𝑆 =  

𝑁𝑅

∑
𝑗 = 1

(𝑈𝑗 ‒  �̅�)2

𝑁𝑅 ‒ 1

. (8b)

In (8a)  is the critical value at  degrees of freedom corresponding to a Student’s t 𝑧1 ‒ 𝛼/2 𝑁𝑅 ‒ 1

distribution upper-tail area of . For example, for  and confidence (or probability) 𝛼/2 𝑁𝑅 = 10

levels of 50%, 95%, and 99% critical values are , , and , 𝑧0.25 = 0.703 𝑧0.025 = 2.262 𝑧0.005 = 3.25

respectively. For comparison, the corresponding values for  are , , 𝑁𝑅→∞ 𝑧0.25 = 0.674 𝑧0.025 = 1.96

and .𝑧0.005 = 2.576
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The error in (8a) can be reduced either by reducing the variance of , i.e., , by increasing the 𝑈 𝑆2

number of realization , or by a combination of the two. The control variate method presented 𝑁𝑅

herein reduces the variance of  for a given .𝑈 𝑁𝑅

1.1.1. Performance Quantities of Interest
As noted in the introduction we are typically interested in evaluating a quantity of interest (PQI) 
at a specific location in the problem domain. 
The standard estimate for the mean of the output function  is given by𝑃𝑄𝐼 = 𝑃𝑄𝐼(𝑈)

̅𝑃𝑄𝐼 =  
1

𝑁𝑅
 

𝑁𝑅

∑
𝑖 = 1

𝑃𝑄𝐼𝑖 =  
1

𝑁𝑅
 

𝑁𝑅

∑
𝑖 = 1

𝑃𝑄𝐼(𝑈𝑖). (9a)

We use the control variate reduction technique to reduce the error associated with (9a) by instead 
using the control variate estimator

̂𝑃𝑄𝐼 =  
1

𝑁𝑅
 

𝑁𝑅

∑
𝑖 = 1

𝑃𝑄𝐼 ∗
𝑖 =  

1
𝑁𝑅

 

𝑁𝑅

∑
𝑖 = 1

𝑃𝑄𝐼 ∗ (𝑈𝑖), (9a)

where

𝑃𝑄𝐼 ∗
𝑖 = 𝑃𝑄𝐼 ∗

𝑖 +  𝑐1(𝑔1𝑖 ‒ 𝐺1) +  …. +  𝑐𝑘(𝑔𝑘𝑖 + 𝐺𝑘) (10)

for control parameter , and  uncertain parameters or properties , and where gj 𝑐𝑘 ∈ 𝑅 𝑘 𝑔𝑗, 𝑗 = 1,2, …𝑘

are vectors of length NR having elements gji, i = 1, … NR and

.𝐺𝑘 =  𝐸[𝑔𝑘] (11)

The variance of the control estimator is 

𝑉𝑎𝑟(𝑃𝑄𝐼 ∗ ) = 𝑉𝑎𝑟(𝑃𝑄𝐼) + 2 
𝑘

∑
𝑖 = 1

𝑐𝑖 𝐶𝑜𝑣(𝑃𝑄𝐼, 𝑔𝑖) +  
𝑘

∑
𝑖 = 1

𝑘

∑
𝑗 = 1

𝑐𝑖𝑐𝑗 𝐶𝑜𝑣(𝑔𝑖,𝑔𝑗). (12)

The coefficients  can be determined by taking the partial derivative of (12) with respect to each 𝑐𝑖

, set each resulting equation to 0, and solve the system of  equations for  unknowns. Each  is 𝑐𝑖 𝑘 𝑘 𝑐𝑖

estimated by using sampled and computed quantities  and , respectively, from the 𝑔𝑖 𝑃𝑄𝐼
probabilistic assessment simulations. Equation (10) is then used to determine the control variate 
estimate or improved estimate of the mean.
Considering a single control variate, equation (10) reduces to

𝑃𝑄𝐼 ∗ = 𝑃𝑄𝐼 +  𝑐1(𝑔1 ‒ 𝐺1) (13)

and (12) becomes
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.𝑉𝑎𝑟(𝑃𝑄𝐼 ∗ ) = 𝑉𝑎𝑟(𝑃𝑄𝐼) + 2𝑐1 𝐶𝑜𝑣(𝑃𝑄𝐼, 𝑔1) +  𝑐2
1 𝑉𝑎𝑟(𝑔1) (14)

Choosing  so that the  is minimized,  is found to be𝑐1 𝑉𝑎𝑟(𝑃𝑄𝐼 ∗ ) 𝑐1

𝑐1 =  ‒
𝐶𝑜𝑣(𝑃𝑄𝐼, 𝑔1)

𝑉𝑎𝑟(𝑔1)
. (15)

An alternate method for estimating coefficients  is linear regression analysis [7]. Equation 15 𝑐𝑖

can be written as

𝑐1 =‒  

𝑁𝑅

∑
𝑖 = 1

(𝑃𝑄𝐼𝑖 ‒  ̅𝑃𝑄𝐼)(𝑔1𝑖 ‒  𝐺1)

𝑁𝑅

∑
𝑖 = 1

(𝑔1𝑖 ‒  𝐺1)

. (16)

Now consider the linear regression model

,𝑃𝑄𝐼 =  𝐴 +  𝐵𝑔1 + 𝜖 (17)

where  is a random error term with mean 0 and variance . The usual least square estimates of 𝜖 𝜎2

 and  are𝐴 𝐵

�̂� = ̅𝑃𝑄𝐼 ‒  �̂��̅�1 (18a)

and

�̂� =  

𝑁𝑅

∑
𝑖 = 1

(𝑃𝑄𝐼𝑖 ‒  ̅𝑃𝑄𝐼)(𝑔1𝑖 ‒  𝐺1)

𝑁𝑅

∑
𝑖 = 1

(𝑔1𝑖 ‒  𝐺1)

. (18b)

Comparing (18b) with (16) we find that and from (13) and (17)�̂� =‒ 𝑐1

.
̂𝑃𝑄𝐼 =  ̅𝑃𝑄𝐼 + 𝑐1(�̅�1 ‒  𝐺1) =  ̅𝑃𝑄𝐼 ‒ �̂�(�̅�1 ‒  𝐺1) =  �̂� +  �̂�𝐺1

(19)
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Therefore from (19) the control variate estimate  is equal to  given by the linear regression ̂𝑃𝑄𝐼 𝑃𝑄𝐼

equation evaluated at . Furthermore the regression estimate of the variance  is𝑔1 = 𝐺1 𝜎2

�̂�2 =  𝑉𝑎𝑟(𝑃𝑄𝐼 ‒ �̂�𝑔1) =  𝑉𝑎𝑟(𝑃𝑄𝐼 + 𝑐1𝑔1) (20)

Hence, the variance of the control estimator is 

𝑉𝑎𝑟 ( ̂𝑃𝑄𝐼) =  
�̂�2

𝑁𝑅
=  𝑉𝑎𝑟( ̅𝑃𝑄𝐼 + 𝑐1(�̅�1 ‒  𝐺1)). (21)

The linear regression approach also applies when multiple control variates are used as in (10) by 
using a multiple regression model. See Appendix B for a comparison of results between  and .�̂� 𝑐1

One advantage of using the linear regression approach to estimating control variates and the 
variance in  is that linear regression is often used to perform a sensitivity analysis as part of ̂𝑃𝑄𝐼
system performance assessment and therefore the use of this technique in control variates is a 
natural extension of this analysis. In addition, linear regression packages are readily available. 
1.1.2. One-Dimensional Problem
A one-dimensional problem is presented here to illustrate and test the implementation of the 
control variate method. Consider the following elliptic homogeneous problem with Dirichlet 
boundary conditions

∂2𝑢

∂𝑥2
‒ 𝑣

∂𝑢
∂𝑥

= 0 0 ≤ 𝑥 ≤ 1 (22)

𝑢(0) = 1 (23a)

𝑢(1) = 0 (23b)

where we assume  and constant but with uncertainty described by probability density 𝑣(𝜔) ≥ 0

function . The test cases considered in this study include uniform and triangular density 𝐷𝑣

functions. The analytical solution (24) to model problem (22) and (23) is illustrated in Figure 1.

𝑢(𝑥) =  
𝑒𝑣𝑥 ‒  𝑒𝑣

1 ‒  𝑒𝑣 (24)
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Figure 1. Behavior of analytical solution for a range of .𝑣

In this study we examine the performance quantity of interest  at . 𝑃𝑄𝐼(𝑥) = 𝑢(𝑥) 𝑥 = 0.9

For model problem (22) and (23) we consider a single control variate that corresponds to the 
uncertain coefficient  where  

𝑣(𝜔𝑗), 𝑗 = 1,2, …𝑁𝑅

,𝑃𝑄𝐼 ∗
𝑗 = 𝑃𝑄𝐼𝑗 +  𝑐𝑣(𝑣𝑗 ‒ 𝐺𝑣) (25)

where  is the mean of the probability density function , and  is the value of the 𝐺𝑣 𝐷𝑣 𝑃𝑄𝐼 ∗
𝑗

controlled performance measure for realization . The improved mean value of the  at  𝑗 𝑃𝑄𝐼 𝑥 = 0.9
is

̂𝑃𝑄𝐼(0.9) =  
1

𝑁𝑅

𝑁𝑅

∑
𝑗 = 1

𝑃𝑄𝐼 ∗
𝑗 (0.9) =  

1
𝑁𝑅

𝑁𝑅

∑
𝑗 = 1

(𝑃𝑄𝐼𝑗 + 𝑐𝑣𝑣𝑗) ‒  𝑐𝑣𝐺𝑣 (26)

The coefficient  is given by𝑐𝑣

𝑐𝑣 =  ‒
𝐶𝑜𝑣(𝑃𝑄𝐼, 𝑣)

𝑉𝑎𝑟(𝑣)
, (27)

where equation (27) would be evaluated in a post-processing manner after generating  𝑁𝑅

realizations of  𝑃𝑄𝐼𝑗

𝑐𝑣 =  

𝑁𝑅

∑
𝑗 = 1

(𝑃𝑄𝐼𝑗 ‒  ̅𝑃𝑄𝐼)(𝑣𝑗 ‒  𝐺𝑣)

𝑁𝑅

∑
𝑗 = 1

(𝑣𝑗 ‒  𝐺𝑣)2

(28)
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with 

̅𝑃𝑄𝐼 =  
1

𝑁𝑅
 

𝑁𝑅

∑
𝑗 = 1

𝑃𝑄𝐼𝑗. (29)

For the model problem considered here it is possible to derive an analytical expression for the 
exact mean of  for a simple  such as the uniform density function . The 𝑃𝑄𝐼(0.9) 𝐷𝑣 𝐷𝑣 = 1/(𝑐 ‒ 𝑎)

triangular density function is

2(𝑥 ‒ 𝑎)
(𝑐 ‒ 𝑎)(𝑝𝑘 ‒ 𝑎) 𝑥 < 𝑝𝑘

 𝐷𝑣(𝑥) =
2(𝑐 ‒ 𝑥)

(𝑐 ‒ 𝑎)(𝑐 ‒ 𝑝𝑘) 𝑥 ≥ 𝑝𝑘
(30)

where  is the location of the peak (i.e., mode) of the distribution. This mean is given by𝑝𝑘

v,
𝐸[𝑢(𝑥)] =

𝑐

∫
𝑎

𝑒𝑥𝑣 ‒  𝑒𝑣

1 ‒  𝑒𝑣
𝐷𝑣𝑑 (31)
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the variance of  is given by 𝑣

𝐸[𝑉𝑎𝑟(𝑣)] =
𝑐

∫
𝑎

(𝑣 ‒ �̅�)2𝐷𝑣𝑑𝑣, (32)

and the covariance of  and  is𝑣 𝑢(𝑥)

𝐸{𝐶𝑜𝑣[𝑢(𝑥),𝑣]} =
𝑐

∫
𝑎

[𝑒𝑥𝑣 ‒  𝑒𝑣

1 ‒  𝑒𝑣
‒ 𝐸[𝑢(𝑥)]][𝑣 ‒ �̅�]𝐷𝑣𝑑𝑣. (33)
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2. NUMERICAL RESULTS
We numerically integrate Equations 31 through 33 for three uniform distributions: 

, , , and one triangular distribution 𝑈{𝑎 = 0.1,𝑐 = 1 } 𝑈{𝑎 = 0.1, 𝑐 = 5} 𝑈{𝑎 = 0.1, 𝑐 = 10 }
to obtain the results in Table 1.𝑇𝑟{𝑎 = 0.1, 𝑝𝑘 = 7,𝑐 = 10} 

Table 1. Numerically Integrated Expected Values for x = 0.9

Distribution E[u(0.9)] E[Var(v)] E{Cov[u(0.9),v]} cv

U{0.1, 1} 0.12685 0.06750 0.0034521 -0.051142

U{0.1, 5} 0.24602 2.00083 0.12207 -0.061010

U{0.1, 10} 0.38606 8.16750 0.45309 -0.055475

Tr{0.1, 7, 10} 0.42764 4.29500 0.23840 -0.055505

The results presented in Figure 2 show the simple mean (  given by a black line, each line ̅𝑃𝑄𝐼
representing a  for a different random seed), obtained from averaging PQIi for a set of random ̅𝑃𝑄𝐼
inputs i = 1, .. NR, and the variate controlled estimate given by (26) (  given by corresponding ̂𝑃𝑄𝐼
solid color lines). The four subplots give results consistent with the four distributions listed in 
Table 1. While details of the resulting statistics differ for the different seeds as expected, the 
improvement from applying the variance reduction method consistently improves the estimate of 
PQI across distributions and sample sizes. For the narrower distributions the improvement in 
approximately two orders of magnitude reduction in error for all NR, and one order of magnitude 
improvement for the wider uniform and triangular distributions across all NR. Note that the 
narrow distribution (red in leftmost subplot) had the smallest variance, while the widest uniform 
distribution (blue) has the highest variance. Also, all results in Figure 2 converge to their 
corresponding exact solution at a rate of ~  as expected from Equation (8a) and as shown 1/ 𝑁𝑅

on the log-log plots with a slope of ~ -1/2. Appendix provides the statistics for the plots in Figure 
2.
Figure 2 also shows that the control variate technique gives the same level of error in the variate 
controlled mean that would be obtained by computing a larger number of realizations and using 
the simple mean (e.g., moving horizontally from left to right at a particular error value and small 

 ( ) to a larger  (  realizations)).𝑁𝑅 < 100 𝑁𝑅 ~10,000
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Figure 2. PQI(x=0.9) for Four Distributions in Table 1 across Sample Sizes NR for 50 
different random seeds.

Figure 3 shows representative horsetail plots of all solutions for each distribution in the  𝑁𝑅 = 100

case (using the first random seed out of 50 random seeds). The integration of (26) via quadrature 
(i.e., using the quadpack library available through scipy - https://www.scipy.org) is given as the 
heavier red line. Each subplot shows the analytical solution (Equations 22 and 23) across the 
domain  for the vector of 100  values given from the distribution. 0 ≤ 𝑥 ≤ 1 𝑣

https://www.scipy.org
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(a) (b) 

 

(c) (d) 

Figure 3. Horsetail Plots Showing Analytical Solution Results for NR=100 and Uniform 
Distributions (a) U[0.1,1], (b) U[0.1,5], (c) U[0.1,10], and Triangular Distribution 

(d) U[0.1,7, 10].
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3. CONCLUSIONS
This report presents a preliminary study of the method of control variates for calculating an 
improved estimate for the expectation of a performance quantity of interest  computed 𝐸(𝑃𝑄𝐼)
from Monte Carlo probabilistic simulations. Numerical results indicate that the method can 
produce estimates of  having superior accuracy on coarser meshes and reduce the required 𝐸(𝑃𝑄𝐼)
number of simulations needed to achieve an acceptable estimate. The method is well suited for 
large-scale performance assessment analyses because it can easily be implemented for problems 
involving a large number of uncertain parameters and it is a post-processing method and 
therefore non-intrusive to the probabilistic simulations. Future work will include investigations 
of multidimensional problems involving several uncertain parameters and actual performance 
assessment simulations. These investigations will examine prediction intervals for  and the 𝐸(𝑃𝑄𝐼)
relative errors of  and individual contributions of spatial and temporal truncation error 𝐸(𝑃𝑄𝐼)
from numerical approximations to the governing partial differential equations.
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APPENDIX A. EXAMPLE PROBLEM

The example presented here shows that in the case where the exact solution  is known or 𝑢
calculated by the numerical method that the control variate techniques will yield an exact 
expectation for the  at point , for .𝑃𝑄𝐼 = 𝑢(𝑥𝑖) 𝑥𝑖 0 ≤ 𝑥𝑖 ≤ 1

∂2𝑢

∂𝑥2
‒ 𝑣

∂𝑢
∂𝑥

= 𝑓 (A1)

𝑓 =  2𝑣(𝑣𝑥 ‒ 1)

0 ≤ 𝑥 ≤ 1
(A2)

𝑢(0) = 1 (A3a)

𝑢(1) = 1 ‒ 𝑣
𝑎 ≤ 𝑣 ≤ 𝑏

(A3b)
with  and  constants. The solution to (A1) through (A3) is𝑎 𝑏

. (A4)𝑢 = 1 ‒ 𝑣𝑥2

We assume that uncertain  is given by a uniform density function𝑣

𝐷𝑣 =  
1

𝑏 ‒ 𝑎 (A5)

and probability distribution

𝐹𝑣 =  
𝑣 ‒ 𝑎
𝑏 ‒ 𝑎

. (A6)

The expectation and variance of  is given by𝑣

𝐸(𝑣) =
𝑎 + 𝑏

2 (A7)

and

𝑉𝑎𝑟(𝑣) =
(𝑏 ‒ 𝑎)2

12
. (A8)

The enhanced or controlled  is𝑃𝑄𝐼 ∗

𝑃𝑄𝐼 ∗
𝑗 = 𝑃𝑄𝐼𝑗 + 𝑐𝑣(𝑣𝑗 ‒ 𝐸[𝑣])

.= 1 ‒ 𝑥2𝑣𝑗 + 𝑐𝑣(𝑣𝑗 ‒  𝐸[𝑣]) (A9)

 , then the exact result is given𝐼𝑓 𝑐𝑣 = 𝑥2

𝑃𝑄𝐼 ∗
𝑗 = 1 ‒ 𝐸[𝑣]. (A10)

This result can also be determined from (A9) by inspection. Since (A10) yields a constant then it 
follows that E( ) is exact.𝑃𝑄𝐼 ∗

𝑗
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APPENDIX B.: NUMERICAL EXAMPLE RESULTS

Appendix B lists the statistics for plots in Figure 2, showing how the estimates of , 𝑉𝑎𝑟(𝑣)

, , , and  converge toward their exact values as the sample size increases. The 𝐶𝑜𝑣(𝑄, 𝑣) 𝑃𝑄𝐼 𝑐𝑣 ̂𝑃𝑄𝐼
numerically computed results also converge as illustrated in the rightmost columns.

=================================================================================================================== 

 uniform distribution: 0.1 <= v <= 1.0   seed:1411193087 

 

           N          var(v)   cov[Q(x),v]     PQI                   cv                PQIhat     |     slope         intercept         r^2_val         std_err 

         10 0.0920328   0.0047003   0.1224125   -0.0510720   0.1270130 |  0.0510720   0.0989234   0.9995529   0.0003819    

         30 0.0722313   0.0036876   0.1272948   -0.0510533   0.1268764 |  0.0510533   0.0987971   0.9994949   0.0002169    

       100 0.0689005   0.0035340   0.1292520   -0.0512910   0.1268615 |  0.0512910   0.0986515   0.9993803   0.0001290    

       300 0.0684014   0.0035085   0.1284726   -0.0512928   0.1268546 |  0.0512928   0.0986436   0.9994379   0.0000705    

     1000 0.0667399   0.0034093   0.1267527   -0.0510838   0.1268460 |  0.0510838   0.0987499   0.9994280   0.0000387    

     3000 0.0666961   0.0034071   0.1265992   -0.0510841   0.1268457 |  0.0510841   0.0987494   0.9994377   0.0000221    

    10000 0.0677884   0.0034648   0.1267221   -0.0511126   0.1268513 |  0.0511126   0.0987394   0.9994393   0.0000121    

    30000 0.0680877   0.0034812   0.1268202   -0.0511289   0.1268529 |  0.0511289   0.0987320   0.9994371   0.0000070    

  100000 0.0675568   0.0034546   0.1268661   -0.0511368   0.1268501 |  0.0511368   0.0987248   0.9994392   0.0000038    

  300000 0.0675827   0.0034561   0.1268428   -0.0511383   0.1268502 |  0.0511383   0.0987241   0.9994387   0.0000022    

1000000 0.0675408   0.0034541   0.1268534   -0.0511416   0.1268499 |  0.0511416   0.0987221   0.9994391   0.0000012    

       ------------------------------------------------------------- 

 True:      0.0675000    0.0034521   0.1268497   -0.0511420 
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=================================================================================================================== 

 uniform distribution: 0.1 <= v <= 5.0   seed:1411193087 

 

            N    var(v)        cov[Q(x),v]          PQI                 cv             PQIhat      |      slope         intercept         r^2_val     std_err 

          10 2.0073546   0.1238244   0.2416460   -0.0616853   0.2455266 |  0.0616853   0.0882290   0.9998472   0.0002696    

          30 1.8700348   0.1155911   0.2534395   -0.0618123   0.2453677 |  0.0618123   0.0877465   0.9998328   0.0001511    

        100 2.0087038   0.1227814   0.2501162   -0.0611247   0.2459611 |  0.0611247   0.0900931   0.9993512   0.0001573    

        300 1.9983496   0.1221054   0.2465775   -0.0611031   0.2459657 |  0.0611031   0.0901528   0.9993157   0.0000926    

      1000 2.0070287   0.1226063   0.2486283   -0.0610885   0.2460014 |  0.0610885   0.0902259   0.9993471   0.0000494    

      3000 2.0188573   0.1232042   0.2463171   -0.0610267   0.2460215 |  0.0610267   0.0904034   0.9992894   0.0000297    

    10000 1.9956744   0.1217065   0.2456199   -0.0609851   0.2460335 |  0.0609851   0.0905215   0.9992762   0.0000164    

    30000 2.0025217   0.1221386   0.2451714   -0.0609924   0.2460228 |  0.0609924   0.0904922   0.9992824   0.0000094    

  100000 2.0073458   0.1224704   0.2460245   -0.0610111   0.2460250 |  0.0610111   0.0904466   0.9992953   0.0000051    

  300000 2.0066791   0.1224242   0.2459474   -0.0610084   0.2460256 |  0.0610084   0.0904543   0.9992934   0.0000030    

1000000 2.0031026   0.1222079   0.2459731   -0.0610093   0.2460232 |  0.0610093   0.0904494   0.9992929   0.0000016    

       ------------------------------------------------------------- 

 True:     2.0008333   0.1220706   0.2460220   -0.0610099 

 

=================================================================================================================== 

 uniform distribution: 0.1 <= v <= 10.0   seed:1411193087 

 

            N    var(v)        cov[Q(x),v]        PQI                cv                PQIhat      |     slope          intercept        r^2_val        std_err 

          10 8.3458865   0.4596259   0.3801683   -0.0550721   0.3853206 |  0.0550721   0.1072063   0.9955070   0.0013081    

          30 7.8556679   0.4386254   0.3858923   -0.0558355   0.3862329 |  0.0558355   0.1042635   0.9941197   0.0008115    

        100 6.9742665   0.3874481   0.4035476   -0.0555540   0.3876733 |  0.0555540   0.1071258   0.9946715   0.0004107    

        300 7.9742281   0.4409414   0.3968190   -0.0552958   0.3861108 |  0.0552958   0.1068670   0.9950028   0.0002270    

      1000 8.0457852   0.4464711   0.3842223   -0.0554913   0.3861715 |  0.0554913   0.1059404   0.9952416   0.0001215    

      3000 8.2449704   0.4576389   0.3809896   -0.0555052   0.3858485 |  0.0555052   0.1055471   0.9954443   0.0000686    

    10000 8.0810368   0.4487960   0.3848168   -0.0555369   0.3861575 |  0.0555369   0.1056960   0.9953949   0.0000378    

    30000 8.1991872   0.4549739   0.3856996   -0.0554901   0.3860275 |  0.0554901   0.1058024   0.9953944   0.0000218    

  100000 8.1618570   0.4526394   0.3866702   -0.0554579   0.3860692 |  0.0554579   0.1060068   0.9953383   0.0000120    

  300000 8.1579699   0.4525623   0.3860866   -0.0554749   0.3860758 |  0.0554749   0.1059277   0.9953609   0.0000069    

1000000 8.1610378   0.4527619   0.3859124   -0.0554785   0.3860696 |  0.0554785   0.1059034   0.9953744   0.0000038    

       ------------------------------------------------------------- 

 True:      8.1675000   0.4530894   0.3860604   -0.0554747 
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=================================================================================================================== 

 triangle distribution: 0.1 <= v <= 10.0 (peak=7.0)   seed:1411193087 

 

            N    var(v)        cov[Q(x),v]        PQI                cv                PQIhat      |     slope          intercept        r^2_val        std_err 

          10 1.1548942   0.0647796   0.4109397   -0.0560914   0.4333764 |  0.0560914   0.1136555   0.9985833   0.0007470    

          30 4.1009968   0.2213913   0.4406383   -0.0539848   0.4277857 |  0.0539848   0.1200725   0.9931886   0.0008449    

        100 4.2706408   0.2358519   0.4300553   -0.0552264   0.4277693 |  0.0552264   0.1129791   0.9939301   0.0004360    

        300 4.6311031   0.2544533   0.4370673   -0.0549444   0.4268079 |  0.0549444   0.1136247   0.9943566   0.0002398    

      1000 4.5654297   0.2535479   0.4247725   -0.0555365   0.4271528 |  0.0555365   0.1105949   0.9949997   0.0001246    

      3000 4.3813075   0.2429508   0.4273735   -0.0554517   0.4274901 |  0.0554517   0.1114156   0.9947613   0.0000735    

    10000 4.3129460   0.2390303   0.4288595   -0.0554216   0.4275705 |  0.0554216   0.1116675   0.9946865   0.0000405    

    30000 4.3015577   0.2386473   0.4286005   -0.0554793   0.4276068 |  0.0554793   0.1113749   0.9947114   0.0000234    

  100000 4.2740504   0.2371906   0.4280964   -0.0554955   0.4276691 |  0.0554955   0.1113448   0.9946852   0.0000128    

  300000 4.2860414   0.2377893   0.4281159   -0.0554799   0.4276396 |  0.0554799   0.1114040   0.9947026   0.0000074    

1000000 4.2973168   0.2384860   0.4277764   -0.0554965   0.4276279 |  0.0554965   0.1112980   0.9947297   0.0000040    

       ------------------------------------------------------------- 

 True:      4.2950000   0.2383953   0.4276379   -0.0555053 
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