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Gas flux data are a function of permeability (m’):

circles: 1x10"(red), 2x10™ (green), 4x10™ (blue)

upward triangles: 1x10™""(red), 2x10™",(green), 4x10™" (blue)
crosses: 1x107(red), 2x10™",(green), 4x10™ (blue)

I I o M Ot Ivat ion an d B aCKg roun d on downward triangles: 1x107 (red), 2x10™,(green), 4x10™~ (blue) Simulations include constant pressure at the center of each

“fracture”, which represents the producing well.
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Helium-4 in particular is abundant in the
subsurface and has potentially 2 to 4 times
higher transport coefficients than methane
depending on the Knudsen number (ratio of

, , , mean free path to pore diameter) and
Flow regions and reservoir properties transport processes.
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