Exceptional service in the national interest

Deep Borehole: from Disposal Concept to Field Test

Kristopher L. Kuhlman

Sandia National Laboratories

Applied System Analysis & Research Department

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-3116 PE

2

Deep Borehole Disposal Concept

- ≤17" hole to 5 km
- Straightforward
 Construction
- 10 × Geologic
 Isolation of Mined
 Repository
- Conditions at Depth
 - Low permeability
 - Stable density gradient
 - Reducing fluid chemistry

Radioactive Waste Forms

- **Waste Properties**
 - **Thermal output**
 - **Physical size**
 - Waste total volume
- **Primary Waste Forms**
 - **Commercial spent nuclear fuel**
 - **DOE-managed high-level waste**
 - Tank waste converted to:
 - Borosilicate glass logs
 - Cs-137/Sr-90 capsules

Hanford tank farm

Assemblies

2,000 Cs/Sr Capsules [\approx 3" diam.]

Radioactive Waste Volumes

Recent Motivating Events

- Jan. 2012: Blue Ribbon Commission Report
- Jan. 2013: US Department of Energy (DOE) Strategy

Strategy for Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste

Oct. 2014: DOE Disposal Options

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

- 1. Dispose all HLW & SNF in common repository
- 2. Dispose some DOE-managed HLW and SNF in separate mined repository
- **3.** Dispose of smaller waste forms in deep boreholes

Oct. 2014: Deep Borehole Request for Information (RFI)

Seeking Interest in siting a Deep Borehole Field Test

March 24, 2015: Obama Memo

"In accordance with the [Nuclear Waste Policy] Act, I find the development of a repository for the disposal of high-level radioactive waste resulting from atomic energy defense activities only is required"

March 2015: Deep Borehole Draft Request for Proposals (RFP)

Seeking Site, Drilling & Management Proposals for Deep Borehole Field Test

History

Deep Continental Drilling

Deep Borehole Disposal

- Hess et al. (1957) NAS Publication 519
 The Disposal of Radioactive Waste on Land.
 Appendix C: Committee on Deep Disposal
- Obrien et al. (1979) LBL-7089
 The Very Deep Hole Concept: Evaluation of an Alternative for Nuclear Waste disposal
- Woodward-Clyde (1983) ONWI-226
 Very Deep Hole Systems Engineering Studies
- Juhlin & Sandstedt (1989) SKB 89-39
 Storage of Nuclear Waste in Very Deep Boreholes
- Ferguson (1994) SRNL WSRC-TR-94-0266
 Excess Plutonium Disposition: The Deep Borehole Option

• Heiken et al. (1996) LANL LA-13168-MS

Disposition of Excess Weapon Plutonium in Deep Borehole: Site Selection Handbook

Harrison (2000) SKB-R-00-35

Very Deep Borehole – Deutag's Opinion on Boring, Canister Emplacement and Retreivability

Nirex (2004) N/108

A Review of the Deep Borehole Disposal Concept

Beswick (2008)

Status of Technology for Deep Borehole Disposal

Brady et al. (2009) SNL SAND2009-4401

Deep Borehole Disposal of High-Level Radioactive Waste

Deep Borehole Disposal Concept

Deep Borehole Concept & Field Test

Deep Borehole Disposal (DBD)

- Boreholes in crystalline rock to 5 km TD
- 3 km bedrock / 2 km overburden
- 1 km bedrock seal
- 2 km disposal zone
- Single borehole or grid

Deep Borehole Field Test (DBFT)

- Department of Energy Office of Nuclear Energy (DOE-NE)
- FY 2015-2019 project
- Two boreholes to 5 km TD
- Science and engineering demonstration

Siting: Bedrock + Hazards

Siting: Oil/Gas Activity

Siting: Geothermal

Siting: Basement Structure

Siting: Stress State

15

Deep Borehole Preliminary Modeling

Deep Borehole TM Model

- Thermal-Mechanical Model of Borehole Response @ 5 years
- Borehole Heating + Stress \rightarrow Host Rock in Compression Along σ_{H}
- Fractures in σ_h Direction Still Extensional

Deep Borehole PA Models

Performance Assessment (PA) Modeling

- Reference geology and borehole design
- Assume grid of boreholes for used nuclear fuel
- Assess post-closure safety
- Thermal-hydrological-chemical processes simulated with FEHM

Deep Borehole PA Models

Short Thermal Perturbation

Minimal Resulting Free Convection

Deep Borehole PA Models

No Radionuclide Release in 10⁶ Years

Deep Borehole Field Test

Deep Borehole Field Test (DBFT)

Drill Two 5-km Boreholes

- Characterization Borehole (CB): 21.6 cm [8.5"] @ TD
- Field Test Borehole (FTB): 43.2 cm [17"] @ TD
- Prove Ability to:
 - Drill deep, wide, straight borehole safely (CB + FTB)
 - Characterize bedrock (CB)
 - Test formations in situ (CB)
 - Collect geochemical profiles (CB)
 - Emplace/retrieve surrogate canisters (FTB)

Characterization Borehole (CB)

- Medium-Diameter Borehole
 - Within current drilling experience
- Drill/Case Sedimentary Section
 - Minimal testing (not DBFT focus)
- Drill Bedrock Section
 - Core (5%) and sample bedrock
- Testing/Sampling After Completion
 - Packer tool via work-over rig
 - At limits of current technology

Borehole designed to maximize likelihood of good samples

CB: Environmental Tracer Profiles

Vertical Profiles

- Fluid density
- Temperature
- Noble gases
- Stable water isotopes
- Atmospheric radioisotope tracers (e.g., Xe)
- Long-Term Data
 - Water provenance
 - Flow mechanisms

 $\mathsf{Minerals} \rightarrow \mathsf{pores} \rightarrow \mathsf{fractures}$

Fluid Sample Quality + Quantity Very Important!

CB: Hydrogeologic Testing

- Hydrologic Property Profiles
 - Static formation pressure
 - Permeability / compressibility
 - Pumping/sampling in high K
 - Pulse testing in low K
- Borehole Tracer Tests
 - Single-well injection-withdrawal
 - Vertical dipole
 - Understand transport pathways
- Hydraulic Fracturing Tests
 - σ_h magnitude
- Borehole Heater Test
 - Surrogate canister with heater

Characterization Difference

Borehole Characterization & Siting vs.

- Mined waste repositories
 - Less "site mapping"
 - Go/no go decision point
 - Single-phase fluid flow
 - Less steep pressure gradients
- Oil/gas or mineral exploration
 - Crystalline basement vs sedimentary rocks
 - Low-permeability
 - Minimal mineralization
 - Avoid overpressure
- Geothermal exploration
 - Low geothermal gradient

SAND2010-6048

DBFT: Field Test Borehole (FTB)

Large-Diameter Borehole

Push envelope of drilling tech

Casing Schedule

- Continuous 13 ¾" pathway to TD
 - Slotted & permanent in disposal interval
 - Removable in seal and overburden intervals

Demonstrate

- Emplacing canisters
- Removing canisters
- Surface handling operations

Borehole designed to maximize emplacement safety

Waste Package Design

- Structural Integrity
 - Hydrostatic pressure and canister string load
 - Integrity through emplacement, sealing, and closure
- Waste Loading
 - Transport and dispose in same canister
 - Transfer from shipping casks onsite

FTB: Emplacement Methods

www.apacheoilcompany.com

FTB: Operational Safety

- Zero Radiological Risk
- Focus on Downhole Safety
- Downhole Failure Modes
 - Pipe string + canister(s) drop in borehole
 - Pipe string drop onto canister(s)
 - Single canister drop in borehole (consequence?)
 - Canister leak/crush
 - Fishing operations
 - Seismic events

NTS Climax Spent Fuel Test (1978-1983)

Summary

- Deep Borehole Disposal Concept
 - 10 × geologic isolation of mined repository
 - Seals only pathway for release
 - Simple construction (for few boreholes)
 - Wide site availability
 - Single-Phase, Diffusion Dominated
 - Geological Issues?
 - Drill elsewhere vs. Engineer away
- Deep Borehole Field Test (FY15-19)
 - Drill two 5-km large-diameter boreholes
 - Demonstrate ability to
 - Characterize bedrock system (CB)
 - Emplace/retrieve surrogate canisters (FTB)

SAND2010-6048

