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Brine Availability Test in Salt at WIPP (BATS)

Monitoring brine distribution, inflow, and chemistry from heated salt using 
geophysical methods and direct liquid & gas sampling.

Status: Boreholes drilled (April), instrumentation installed (Sept), test is ready to begin.

What Are We Doing?

New BATS core 

New BATS boreholes

Nearly ready BATS test drift
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Motivation and Background

Why are we doing this?



Long-term benefits
◦ Low connected porosity (0.1 vol-%) and permeability (≤ 10+,, m,)
◦ High thermal conductivity (~5 ⁄W (m ⋅ K))
◦ No flowing groundwater (≤ 5 wt-% water)
◦ Hypersaline brine is biologically simple, has less-stable colloids
◦ Cl (~190	g/L) in brine reduces criticality concerns
◦ Excavations, damage, and fractures will creep closed
◦ Mined salt reconsolidates and heals to intact salt properties

Near-field short-term complexities
◦ Hypersaline brine is corrosive
◦ Salt is very soluble in fresh water
◦ Brine chemistry requires Pitzer
◦ Salt creep requires excavation maintenance

Why Salt?5



• No flowing groundwater, but not dry (≤ 5 wt-% water)
• Water sources in salt

1. Disseminated clay (<5% total; ~25 vol-% brine)
2. Intragranular brine (fluid inclusions; 1 to 2 vol-%)
3. Intergranular brine (between salt crystals; ~0.1%)

• Total brine content correlates with total clay content

• Three types of  water respond differently to heat 
• Three waters have different chemical / isotopic composition

• Porosity (#3) increases due to damage → primary flow path
Q: How do 3 water types contribute to Brine Availability?

Why Focus on Brine in Salt?

Fluid inclusions

20 mm scale bar
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Brine Availability: Distribution of  brine in salt & how it flows to excavations
• Initial conditions to post-closure safety assessment
◦ Brine migration and re-distribution
◦ Evolution of  disturbed rock zone (DRZ) porosity and permeability

• Brine causes corrosion of  waste package / waste form

• Brine is primary radionuclide transport vector
• Liquid back-pressure can resist drift creep closure

Why is Brine Important in a Repository?

WIPP Room B heated brine migration

WIPP Room J canister tests

WIPP Room Q brine inflow WIPP brine permeability testing
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Impact heat-generating radioactive waste would 
have on salt
How do 3 brine types respond to heat
◦Thermal expansion of  brine
◦Fluid inclusions move under a thermal gradient
◦Hydrous minerals dry out

How does salt mechanically respond to heating
◦Creep is accelerated at higher temperatures
◦Rapid changes in temperature cause damage

Why a Heated Test?



What Data are We Collecting?

Two arrays: Heated / Unheated

Behind packer
◦ Circulate dry gas
◦ Quartz lamp heater (750 W)
◦ Borehole closure gage

Samples / Analyses
◦ Analyze gas stream (natural / applied tracers and isotopic makeup)
◦ Collect liquid brine (natural chemistry and natural / applied tracers)
◦ Collect cores (X-ray CT and fluorescence at NETL)

Geophysics
◦ 3× Electrical resistivity tomography (ERT)
◦ 3× Acoustic emissions (AE) / ultrasonic travel-time tomography
◦ 2× Fiber optic distributed strain (DSS) / temperature (DTS) sensing

Heated

Unheated

Cross-section central borehole
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Brine composition samples / H2O isotope data
◦ Observe change in brine sources with temperature

Geophysics
◦ Map 4D evolution of  saturation / porosity / permeability

Temperature distribution
◦ More brine available at high temp (inclusions + hydrous minerals)
◦ Thermal expansion brine driving force
◦ Salt dry-out near borehole

Gas permeability and borehole closure
◦ Thermal-hydrological-mechanical evolution of  salt during heating

Tracer migration through salt
◦ Monitor brine movement through salt damage zone

Why are These Data Useful?10



Why use Horizontal Boreholes with Packers?

Near-drift vertical fractures

Packer

Heater

We want to characterize DRZ, avoiding most damaged areas
• Horizontal borehole avoids clay & anhydrite layers (e.g., MB139) in floor
• Inflatable packer isolates heater from near-drift vertical fracutres

Damage measurements
Disturbed Rock Zone (DRZ)

Borns & Stormont (1988)

BATS borehole

Anhydrite layer below floor
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Test Details

What data will be collected?

What do we hope to learn?



Test Location13

BATS location
N-940 near E-540
SDI Area
Mined 2012650 m depth



Thermocouples (T1-2)

Seal (SL)

Heater (HP)

Source (D)

Sampling (SM)

Fiber (F1)

Acoustic Emission (AE1)

AE2

AE3F2

ERT (E1)

ERT (E2)

ERT (E3)

Borehole Arrays14



Core Analyses

Cores from 4.8” boreholes
X-Ray Computed Tomography (CT)
◦ Medical and industrial scanners

X-Ray Fluorescence (XRF)
◦ Elemental composition on core surface

Sub-core Microstructural Observations
◦ Observe fluid inclusions
◦ Observe dislocations and salt fabric 

Post-test overcore for comparison (12” core)
◦ X-Ray CT and microstructural observations

What type of  brine & how did test change salt?

Distribution in 3D:
Clay & polyhalite
Fracture porosity
Fluid inclusions

Imaging by Dustin Crandall at National Energy Technology Laboratory (NETL) 20 mm scale bar
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Brine Inflow

Gas flowrate + humidity
Brine inflow to boreholes
◦ Highest inflow rate initially
◦ Rate exponentially decays with time

Brine inflow jumps at ±Δ𝑇
More brine at higher temperatures
Permeability / brine saturation of  salt

1990s horizontal borehole 
brine inflow at WIPP

Vertical WIPP boreholes

Vertical boreholes that 
intersected clay layers

Kuhlman et al. (2017) Nowak & McTigue (1987)

Room A: 50°C

Room B: 130°C

~9 g/day

~50 g/day

Hohlfelder (1979)

Salt Block II (1-m lab test)
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Brine Composition
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WIPP MB-139

WIPP MB-140

Brine evolution 

during evaporation

De-ionized water
+ WIPP salt

Liquid brine samples vacuumed from back of  boreholes
Distinguish sources of  water in salt?
◦ Not all brine is same composition
◦ Different formations at WIPP
◦ “Natural” brine vs. dissolved salt

Add / monitor liquid tracers
◦ Perrhenate (NaReO4)
◦ Blue fluorescent dye
◦ Isotopically distinct H2O

Data will inform:
◦ Contribution of  3 brine types (brine)
◦ Advection / diffusion / reaction (tracers)

BATS 2019 
samples

MU-0
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Analyze gas stream in-drift real-time
Gases derived from
◦ Dissolved gas in brine (~15 MPa in far field)
◦ Geogenic gases from salt (e.g., He & Ar)
◦ Added gas tracers (Xe, Ne, Kr & SF6)

Isotopic makeup of  humidity stream
◦ Info on brine source (fluid inclusions vs. clays)

Data will inform:
◦ Gases produced from heating salt
◦ Isotopic identification of  3 brine types
◦ Advection / diffusion /reaction (tracer)

Site 1 (~195°C)

Coyle et al. (1987) BMI/ONWI-624

SRS quadrupole 
mass spectrometer 
(QMS) gas analyzer

Gas Stream Composition

Picarro cavity ringdown
Spectrometer (CRDS)

Lappin (1988)
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Acoustic Emissions (AE)

Holcomb et al. (2001)

Listen to salt with piezoelectric transducers

Passive AE
◦ Salt cracking during heat up & cool-down
◦ Triangulate AE sources around heated borehole
◦ AE correlated with permeability increases

Active AE
◦ “Ping” sensors while listening, estimate travel times
◦ Lower velocity in damaged rock

Data will inform:
◦ Where & when damage occurs
◦ Estimate damage extent
◦ Monitor damage evolution

Rothfuchs et al. (1988)

19



Electrical Resistivity Tomography (ERT) and Fiber Optics

ERT: Measure voltage from applied 
current at every electrode pair
◦ Multiple AC frequencies (1-10 Hz)
◦ Electrodes grouted into boreholes
◦ Data will inform evolution of  brine 

content (i.e., dry-out)

Fiber-optic distributed sensing
◦ Scattering in grouted fiber-optics
◦ Measure temperature and strain
◦ Sub-mm resolution in space
◦ 1 Hz resolution in time

HeatedUnheated

First pre-test data

Possibe dry-out 
around central borehole
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Test Status

Boreholes drilled (Feb-Apr 2019)
Installed instrumentation (May-Aug 2019)
Power turned on in drift Aug 2019

Plumbed and wired experiment (Sept-Oct 2019)

Today
3-4 weeks

~6 months ~6 months
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Cementitious Seals

Emplace Pre-fabricated Cement Plug
◦ Snug fit into satellite borehole
◦ Monitor seal evolution as borehole closes
◦ Strain gages inside plugs
◦ Upscale GRS Lab Seals Tests

Overcore Post-test to Analyze Interfaces
Compare:
◦ Sorel cement (MgO) and salt concrete plugs
◦ Heated and unheated conditions

Observe salt / brine / cement interactions
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Czaikowski & Wieczorek (2016)

Salt Annulus
Cement Plug



Summary and Looking Forward

Not the first heater test in salt or at WIPP
Focus of  test is brine availability
◦Distribution of  different types of  brine
◦How does damage control brine migration
◦Can we predict amount and fate of  brine

Use new:
◦Geophysical methods (ERT, AE, fiber)
◦High-frequency in-drift analytical methods (CRDS, QMS)

New generation of  repository scientists underground
Advance generic salt science for heat-generating waste 
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Thank you!24


