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Abstract1

Two new approaches are presented for the accurate computation of the potential2

due to line elements that satisfy the modified Helmholtz equation with complex3

parameters. The first approach is based on fundamental solutions in elliptical coor-4

dinates and results in products of Mathieu functions. The second approach is based5

on the integration of modified Bessel functions. Both approaches allow evaluation6

of the potential at any distance from the element. The computational approaches7

are applied to model transient flow with the Laplace transform analytic element8

method. The Laplace domain solution is computed using a combination of point9

elements and the presented line elements. The time domain solution is obtained10

through a numerical inversion. Two applications are presented to transient flow11

fields, which could not be modeled with the Laplace transform analytic element12

method prior to this work. The first application concerns transient single-aquifer13

flow to wells near impermeable walls modeled with line-doublets. The second ap-14

plication concerns transient two-aquifer flow to a well near a stream modeled with15

line-sinks.16

Key words: Analytic elements; Line elements; Transient flow; Laplace transform.17

1 Introduction18

Line elements are versatile building blocks for subsurface flow modeling using the analytic19

element method. They may be used to model many features, including stream segments,20

impermeable or leaky walls, and boundaries between zones with different aquifer properties.21

Historically, line elements have been used for the modeling of flow systems governed by22

Laplace’s or Poisson’s equation (e.g., [37]). More recently [8,4,26], line elements have been23

developed for flow systems governed by the modified Helmholtz equation. The general form24

of the modified Helmholtz equation is25

∇2φ− κ2φ = 0 (1)26

Email addresses: mark.bakker@tudelft.nl (Mark Bakker), klkuhlm@sandia.gov (Kristopher

L. Kuhlman).
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where φ is a discharge potential, ∇2 is the two-dimensional Laplacian operator, and κ is a1

parameter. For groundwater flow, the modified Helmholtz equation is often written as2

∇2φ− φ/λ2 = 0 (2)3

where λ = 1/κ is called the leakage factor. The simplest groundwater flow case governed by4

the modified Helmholtz equation is steady flow in a semi-confined aquifer, where λ may be5

computed from the aquifer and semi-confining layer properties (e.g., [37]). Transient flow in6

a single confined aquifer is governed by the diffusion equation, which may be transformed7

into the modified Helmholtz equation through a Fourier or Laplace transformation (e.g.,8

[19,5,26]), in which case λ is generally complex. The system of differential equations governing9

steady flow in multi-aquifer systems may be separated into a set of independent modified10

Helmholtz equations using an eigenvalue analysis [23]. In the case of steady multi-aquifer11

flow there are as many λ values as there are aquitards. Transient multi-aquifer flow is a12

combination of the two former cases [24], where for the general case there are multiple13

complex λ values. Besides saturated flow, linearized steady unsaturated flow is also governed14

by the modified Helmholtz equation (e.g., [32], [7]).15

The solution for a point sink (i.e., a well) or a dipole that satisfies the modified Helmholtz16

equation is well known and may be computed accurately for real and complex λ values at17

any distance from the well using Bessel function libraries. The solution for line elements is18

a different story, however. There are three approaches to derive equations for the potential19

of line elements. The first approach is based on the application of fundamental solutions20

in elliptic coordinates; these elements are referred to as elliptic line elements. The second21

approach requires integration of a point element along a line; these elements are referred to as22

integral line elements. The third approach is the relatively new generating analytic element23

approach [39] and is based on the repeated inversion of the Laplacian to obtain an infinite24

series of functions. In this paper, the first two approaches are applied. Both approaches may25

be applied to obtain the same type of boundary condition along a line element (e.g., specified26

normal gradient or jump in normal gradient), but the variation of the boundary condition27

along the element will be different. For example, the potential is continuous across a line-sink28

while the normal gradient is discontinuous. The variation of both the potential along the29

element and the jump in normal gradient across it differ between the two approaches. The30

two approaches are complementary. Depending on the problem at hand, it may be more31

advantageous to use one type of element over the other, as explained by [6].32

Existing expressions for line elements that satisfy the modified Helmholtz equation cannot be33

computed accurately everywhere prior to this work (e.g., [8,6]). Evaluation of the potential34

for elliptic line elements is hampered by the ability to compute modified Mathieu functions35
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with complex parameters at arbitrary distance from the element. Existing expressions for1

the potential for integral line elements cannot be evaluated at arbitrary distance from the2

element because either computation of the series suffers from round-off error or because3

adopted approximations are valid only within a region around the element. In addition,4

several existing expressions for integral line elements are valid only for real leakage factors. It5

is noted, however, that many of the existing expressions are perfectly suitable for simulation6

of, for example, steady flow in multi-aquifer systems, as this requires evaluation for real7

leakage factors up to a distance of 8λ only. For transient flow, the potential needs to be8

evaluated at much larger distances from the element, and preferably for complex λ.9

The objective of this paper is two-fold. First, accurate approaches are presented for the10

evaluation of the potential function of elliptic and integral line elements, both with complex11

λ values, at any distance from the line element. Second, two new applications to transient12

flow are presented for these elements. The first concerns transient single-aquifer flow to a13

well near impermeable walls modeled with elliptic line-doublets. The second concerns tran-14

sient two-aquifer flow to a well near head boundaries modeled with integral line-sinks. Both15

examples apply the Laplace-transform analytic element method [19,26], where analytic ele-16

ment solutions are obtained in the Laplace domain and the back transformation is computed17

numerically with the algorithm of de Hoog et al. [14].18

2 Governing equations19

Transient single-aquifer groundwater flow is governed by the diffusion equation (e.g., [37])20

∇2φ =
S

kH

∂φ

∂t
, (3)21

where k is the hydraulic conductivity, H is the aquifer thickness (or the average saturated22

thickness for unconfined groundwater flow), S is the storage coefficient, also known as the23

storativity, t is time, and φ is the discharge potential24

φ = kHh (4)25

where h is the hydraulic head. Taking the Laplace transform of (3) gives26

∇2Φ =
pS

kH
Φ (5)27

where Φ = L(φ) and p is the Laplace transform parameter (generally complex); (5) is the28

same form as (2), when λ =
√

kH/(pS). A solution for the potential in the physical time29
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domain is obtained with the inverse Laplace transform, which may be expressed as the1

Bromwich contour integral2

φ = L−1{Φ} =
1

2πi

γ+i∞
∫

γ−i∞

Φeptdp (6)3

A similar analysis may be carried out for transient flow in a multi-aquifer system. A detailed4

derivation for a system with an arbitrary number of aquifers is given in Hemker and Maas5

[24]. Here, discussion is limited to a two-aquifer system. Transient flow in a two-aquifer6

system is governed by7

∇2φ1 =
S1

T1

∂φ1

∂t
+

φ1

cT1
− φ2

cT2
(7)8

9

∇2φ2 =
S2

T2

∂φ2

∂t
− φ1

cT1
+

φ2

cT2
(8)10

where Tn is the transmissivity of aquifer n. Storage in the separating layer is neglected here11

for brevity but may be included easily (see [24]). In Laplace space, the system of differential12

equations (7 and 8) may be written as a matrix differential equation13

∇2~Φ = A~Φ (9)14

where ~Φ is a column vector with the Laplace-transformed potentials of aquifers 1 and 2 as15

its components, and16

A =





1/(cT1) + pS1/T1 −1/(cT2)

−1/(cT1) 1/(cT2) + pS2/T2



 (10)17

The eigenvalues of A are called w1 and w2 with corresponding eigenvectors ~v1 and ~v2. The18

general solution to the matrix differential equation (9) may now be written as19

~Φ = F1~v1 + F2~v2 (11)20

where the functions F1 and F2 satisfy the modified Helmholtz equations21

∇2F1 − w1F1 = 0 ∇2F2 − w2F2 = 0 (12)22

Comparison with (2) shows that λ1 = 1/
√
w1 and λ2 = 1/

√
w2, where both leakage factors23

are generally complex.24
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3 Laplace-transform analytic element method1

There are several approaches to simulate transient flow with the analytic element method.2

Overviews for transient flow in single aquifers are given in [19,38,5,26]. A recent multi-aquifer3

transient analytic element approach using finite differences through time and distributed4

sources to represent the release from storage was presented by [18]. In this paper, solutions5

for transient groundwater flow are obtained with the Laplace-transform analytic element6

method [19,26].7

The Laplace-transform analytic element method consists of three main steps. First, Laplace8

domain solutions are obtained through application of analytic elements that satisfy the mod-9

ified Helmholtz equation (5 or 12). One solution is obtained for each value of the Laplace10

parameter p. Second, the analytic element solutions are evaluated to compute the trans-11

formed potential Φ at a point for multiple values of p. Third, the time-domain solution12

is found using the numerical inverse Laplace transform algorithm of de Hoog, et al., [14].13

This method uses a doubly-accelerated Padé approximation to numerically integrate the14

Bromwich contour integral (6) that defines the inverse Laplace transform. Hence, it uses15

complex values of the Laplace parameter, p, and thus line elements need to be derived for16

complex λ values.17

It is acknowledged that there are many algorithms for the numerical inversion of Laplace18

transforms (e.g., [13]). The Fourier-series based method of de Hoog, et al. [14], converges19

rapidly and works well with most general time behaviors, without ancillary parameters that20

need to be estimated (i.e., like the Weeks method [40]). The multiple values of p needed21

to estimate each φ(t) are not functionally related to t, allowing one set of Φ(p) values to22

be used to compute multiple φ(t) values, typically when t spans no more than a log-cycle.23

Alternative approaches, such as the Stehfest method [36], may require a unique set of Φ(p)24

for each t desired, which can be a significant penalty for situations where many nearby time25

values are needed, e.g., for particle tracking.26

4 Elliptic line elements27

The potential due to a line sink (continuous potential, discontinuous normal gradient) or line28

doublet (continuous normal gradient, discontinuous potential) may be developed in elliptical29

coordinates (Figure 1), using the special functions that arise from separation of variables30

(e.g., [29, p. 1407-1432]). A line segment of length L may be represented as an ellipse of zero31
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radius (analogous to treating a point as a circle of zero radius). The solution for the potential1

is represented as an infinite sum of the product of similar-parity angular and radial Mathieu2

functions (i.e., no products of even and odd pairs). The coefficients for these elements are3

determined from boundary conditions, as is standard in the analytic element method (e.g.,4

[38]). Coefficients can sometimes be computed analytically for simple boundary conditions5

and configurations (e.g., see unsaturated line source solution [27] and uniform strength line6

sink solution [26]).7

The potential due to an elliptic line element is expanded in terms of elliptical eigenfunctions8

as9

Φ(η, ψ) =
∞
∑

n=0

ânKen(η;−q) cen(ψ;−q) +
∞
∑

n=1

b̂nKon(η;−q) sen(ψ;−q) (13)10

where ‘Ke’ and ‘Ko’ are the even and odd second-kind modified radial Mathieu functions in11

terms of the Mathieu parameter −q, defined as12

q = −
(

L

4λ

)2

= − 1

4Λ2
. (14)13

where L is the length of the line-sink and Λ = 2λ/L. Furthermore, ân and b̂n are free14

coefficients to be determined, and ‘ce’ and ‘se’ are the even and odd first-kind modified15

angular Mathieu functions. The angular functions derive their names from “sine-elliptic”16

and “cosine-elliptic”; they are also referred to as Qe and Qo (e.g., [2]). The first summation17

represents an elliptic line-sink, while the second summation concerns an elliptic line-doublet18

(e.g., [6]). Other applications of Mathieu functions to model subsurface flow with analytic19

elements were presented by [7,4].20

Operationally, the elliptic line elements are normalized by the value of the radial Mathieu21

functions at η = 0 to keep the Mathieu function products less than unity, resulting in22

Φ(η, ψ) =
∞
∑

n=0

an
Ken(η)

Ken(0)
cen(ψ) +

∞
∑

n=1

bn
Kon(η)

Kon(0)
sen(ψ) (15)23

where an and bn are different free coefficients due to the normalization. The dependence of all24

the Mathieu functions in (15) on the same value of the Mathieu parameter, −q, is implicit.25

Expressions for the modified Mathieu functions used here are given in the Appendix.26

5 Integral line elements27

Equations for line-elements that fulfill the modified Helmholtz equation may alternatively be28

obtained through integration of point elements. The potential for a line-sink may be obtained29
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through integration of a point sink along a line while the potential for a line-doublet may be1

obtained through integration of a doublet along a line (e.g., [37,6]). Equations for integral line2

elements are generally derived in a local X, Y coordinate system in which the line element3

lies along the X axis with its center at the origin and its end points at X = −1 and X = +1.4

The transformation from the x, y system to the X, Y system is carried out in complex form5

as6

Z = X + iY =
2z − (z1 + z2)

z2 − z1
. (16)7

The potential for a line-sink with uniform inflow a may be written as (e.g., [8])8

Φ = −aL
4π

1
∫

−1

K0(r/Λ)d∆ (17)9

where r =
√

(X −∆)2 + Y 2, K0 is the second-kind modified Bessel function of order zero,10

and as before Λ = 2λ/L where L is the length of the line-sink. The potential for a line-doublet11

with uniform strength b may be written as [6]12

Φ = − bY

2πΛ

1
∫

−1

K1(r/Λ)

r
d∆ (18)13

where K1 is the second-kind modified Bessel function of order one. The parameters a and b14

are free parameters that may be chosen to meet the desired boundary condition at a point15

along the line element. Strengths that vary as a polynomial along the line element may be16

derived as well (e.g., [6]), but are not used here. This paper discusses the computation of17

integral (17); the presented approach may be applied to integral (18) in a similar manner.18

Integration of (17) is not possible in closed form. Several authors have integrated polynomial19

or series representations of K0, for real Λ, of the form20

K0(r/Λ) =
N
∑

n=0

= [2an ln(r/Λ) + bn](r/Λ)
2n (19)21

Heitzman [22] analytically integrated a polynomial approximation of K0 that is valid up to a22

distance of 2Λ ([1], Eq. 9.8.5). Bakker and Strack [8] integrated a polynomial approximation23

that is valid up to 8Λ [12]. Gusyev and Haitjema [20] integrated the infinite series repre-24

sentation given in ([1], Eq. 9.6.13). Although this results theoretically in an exact solution,25

it is well known that this series representation is difficult to compute for larger values of r26

using finite-precision arithmetic [30]. For example, a relative accuracy of 1 × 10−8 can only27

be achieved up to r = 8Λ for real Λ using double precision arithmetic. The computational28

approach presented in this paper may be applied to compute the integral at any distance29

from the element and for complex leakage factors.30
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Integral line-sinks may be used to model transient flow in multi-aquifer systems [8]. For1

one value of the Laplace parameter p, the potential for a line-sink in a two-aquifer system2

consists of the summation of the potential for two line-sinks with different λ values (functions3

F1 and F2 in (11)) multiplied with the corresponding eigenvectors. As the inflow along both4

line-sinks is uniform, their strengths a1 and a2 may be chosen to match any division of inflow5

between the two aquifers (e.g., [8]). Alternatively, the strengths may be chosen such that,6

for example, the heads in the two aquifers are equal.7

6 Computational issues of elliptic line elements8

Since Mathieu functions are the natural basis functions for elliptical shapes, the only two9

significant sources of approximation in a numerical implementation of (15) are the numerical10

approximations involved in the computation of the Mathieu functions and the truncation of11

the infinite series at a finite number of terms (similar to traditional Fourier series).12

Numerical computation of Mathieu functions, although straightforward, can be computa-13

tionally costly and involves two main steps. The first step is the computation of the Mathieu14

coefficients (eigenvectors) and Mathieu characteristic numbers (eigenvalues), which depend15

on an infinite matrix containing the Mathieu parameter q (14), which is here complex. No16

published libraries were available for evaluation of modified Mathieu functions of complex17

q prior to this work. The second step, once the characteristic values are computed, is the18

evaluation of the Mathieu function values for specific η or ψ, by evaluating truncated infinite19

series of trigonometric or modified Bessel functions. Both computational steps are discussed20

below.21

The calculation of Mathieu coefficients and characteristic numbers is either done through22

truncation of a related infinite continued fraction (e.g., [2,17]) or through the more direct23

eigenvalue problem for a truncated infinite banded matrix (e.g., [15,35,34]). The continued24

fraction approach is more specialized to a certain range of Mathieu parameters and orders25

of Mathieu functions and is potentially faster than the matrix approach. Alhargan’s C++26

library [2] uses a tuned version of the continued-fraction approach and is very accurate,27

but it only handles real q ≤ 4n, where n is related to the Mathieu function order. Shirts28

[34] compared both the continued fraction and matrix approaches for real q and non-integer29

orders; he found the continued fraction method faster, but considered both accurate enough30

for calculation of Mathieu functions. The matrix approach is used here because it is more31

general, simpler to program, requires no initial guess, and utilizes the LAPACK library for32

eigenvalues and eigenvectors – specifically, routine ZGEEV [3].33
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Series representations are used to compute the Mathieu functions. Angular Mathieu functions1

are represented by infinite series of trigonometric functions. Radial Mathieu functions can be2

represented in terms of infinite series of hyperbolic trigonometric functions, Bessel functions,3

or products of Bessel functions (e.g., [28, Chap. 2,8,13]). Only the series of Bessel function4

products converge for all values of η, and they converge more rapidly with increasing η [9].5

The series are given in Appendix A.6

The computational accuracy of the elliptic line elements is related to the number of terms7

used in the truncated infinite series involved in the computation of each Mathieu function8

evaluation (i.e., the highest value of r used in (21)–(24)). The infinite matrices from which9

the eigenvalues (Mathieu characteristic numbers) and eigenvectors (Mathieu coefficients)10

are computed (25), include q in the off-diagonals and a function of n2 on the diagonal (e.g.,11

[15,35,34]). Appendix A contains an example matrix used as input to the LAPACK routine12

ZGEEV, which results in the A(2n) matrix needed for evaluation of the even orders of even13

Mathieu functions ((21) and (23)).14

The boundary condition along elliptic line elements is met by computation of the free pa-15

rameters an and bn in (15), which means the boundary condition function is represented by16

a finite series of angular Mathieu functions. The convergence of trigonometric series used to17

expand potentials on the circumference of a circle is well known. Gibbs’ phenomenon plagues18

the expansion of discontinuous functions, but otherwise the process is numerically well be-19

haved. Similarly, Mathieu functions can expand arbitrary functions along the circumference20

of an ellipse; the convergence of generalized Fourier series are similar to the more common21

trigonometric Fourier series, converging and diverging for the same types of functions (e.g.,22

[29, p. 745]). For smooth functions, the convergence of generalized Fourier series are fast.23

The smoother the function being expanded, the faster the convergence [10, §2.6], and the24

smaller the error committed in truncating the infinite series of basis functions.25

Due to their popularity and wide use, there are numerous convergence acceleration techniques26

for smoothing Gibbs’ phenomena encountered with trigonometric series [11, §2.1.4]. General27

analogous methods do not exist for truncated series of angular Mathieu functions, but [16]28

successfully accelerated the expansion of a cylindrical wave function with Mathieu functions29

using a Shanks transformation. Specialized applications can potentially benefit from these30

techniques.31

Shirts [34, Eqs. 2.1 and 2.2] derived a rational approximation for the size of (25) required for32

an accuracy of 10−12, given |q| and the maximum required order of Mathieu function. These33

rational curves give the required matrix size as a function of q and order. Although they were34

derived for real q and general (non-integer) order, they show good agreement with the current35
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implementation for complex q and integer order. The maximum practical |q| is effectively1

104 (i.e., elements of lengths up to L = 2|λ|104), which corresponds roughly to 100 × 1002

matrices. Larger matrices slow down the entire LT-AEM computation significantly, and the3

modified Bessel function library cannot accurately compute Bessel functions of arbitrarily4

high order for all η.5

7 Computational issues of integral line-sinks6

The main computational issue of integral line-sinks is the evaluation of integral (17). A two-7

tiered approach is used to evaluate the integral accurately: near the element the integral8

is computed through analytic integration of a series representation, while farther from the9

element the integral is computed numerically using Gaussian Quadrature.10

For evaluation purposes, the integral is divided into sections that are at most 3Λ long; if11

the line-sink is shorter than 3Λ no division is needed. Each section has its own local Z12

coordinate system. Within a circle of radius |Z| < 3, the integral is evaluated through13

analytic integration of the series representation K0 presented in ([1], Eq. 9.6.13); formulas14

for the analytic integration are given in [8]. Along the circle |Z| < 3, the series representation15

of K0(
√

[(X −∆)2 + Y 2]/Λ) has a relative accuracy better than 10−10 using 18 terms in the16

series for a section of length 3Λ, and with less terms for shorter sections.17

Outside the circle |Z| = 3, the integration is computed using Gaussian Quadrature. Along18

the circle |Z| = 3 a relative error less than 10−10 may be achieved using 7 Gauss-Quadrature19

points for a section of length 3Λ, and again with less terms for shorter sections. For the20

Gaussian Quadrature integration, the modified Bessel function K0 is computed using the21

standard routine provided by the SciPy package for Python [33].22

8 Performance of inverse Laplace transform algorithm23

When working with a Laplace-transformed analytic element solution, the solution for a given24

value of t is computed from a set of solutions corresponding to a vector of values of p needed25

for the numerical inversion algorithm. For elliptic line elements, each value of p results26

in a different value of q, which requires calculation of the Mathieu characteristic numbers27

and Mathieu coefficients (i.e., eigenvalues and eigenvectors of (25)). When using the matrix28

approach to compute Mathieu characteristic numbers, this step is not easily parallelized or29
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vectorized with the existing LAPACK library. For integral line elements used to model multi-1

aquifer flow, each value of p results in a different matrix A (Eq. 10), for which eigenvalues2

and eigenvectors need to be computed. For both sets of elements, a separate analytic element3

solution in Laplace space must be computed for each value of p to obtain values for the free4

parameters. Once the free parameters have been computed (one set for each value of p),5

computation of potentials and fluxes at various x, y, t locations are independent.6

As mentioned, the numerical inverse Laplace transform algorithm by de Hoog, et al. [14]7

allows for inversion of several times within a single log-cycle of time, using a single vector of8

optimal p-values and Φ(p) as inputs. The expression used to pick a vector of p-values for a9

maximum value is10

p = α− ln(ǫ)

2T
+
πj

T
i j = 0, 1, . . . , N − 1 (20)11

where α is the real portion of the greatest Laplace-domain singularity, ǫ is a desired tolerance,12

T is a scaling parameter (often chosen simply as 2tmax), N is the number of terms in the13

approximation, and i is the imaginary unit.14

The fact that p is not directly a function of t allows the Laplace-space calculations for one15

t to be re-used at subsequent t within the same log-cycle. The calculation at individual x,16

y locations can either be parallelized across multiple processors, or the set of calculations17

can be vectorized on a single processor. Code vectorization involves significant re-writing of18

code (from an initial serial loop-based algorithm), while parallelizing a loop over locations19

can often be fairly simple. For example, the implementation of the Laplace transform AEM20

used here for elliptic elements is in Fortran95, allowing ready parallelization using OpenMP21

directives.22

9 Examples of transient elliptical line-doublets23

The following two examples illustrate the use of transient elliptical line-doublet elements and24

a specified zero normal flux boundary condition (∂Φ/∂η = 0). Figure 2 shows a snapshot of25

heads and flow vectors in a transient system, where the effects of pumping have clearly de-26

veloped around and between four impermeable barriers, represented with elliptical elements27

(heavy straight lines in the plots). This figure shows how the contours of head and flow28

vectors are modified by the presence of the line-doublets, compared to radially-symmetric29

flow to a pumping well in a homogeneous field. Head contours are perpendicular to barriers30

and vectors are parallel to them. The four openings between the barriers force the flow to31

constrict, increasing the flow velocity there. Stagnation points occur at the centers of the32
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barriers; the low velocity zone around the stagnation points on the outsides of the barriers1

are clearly visible. In this case, the drawdown is propagating out towards large distances,2

as there is a net inflow into the model. In this example, 21 terms are used in the inverse3

Laplace transform algorithm, the infinite series of Mathieu functions (15) is truncated at 124

terms, and the matrix used for computing Mathieu functions (25) is truncated at 20 terms.5

Figures 3 and 4 show an arrangement of impermeable barriers and an equal-strength pair6

of pumping and injection wells, with injection beginning first. The system is shown in an7

early transient state in Figure 3 with only the point source. The effects of the same line-8

doublets and point source, and an additional point sink are shown after pumping begins in9

Figure 4. Figure 5 is a plot of the time-evolution of head at two locations (stars in Figures 310

and 4). The time evolution plot consists of 200 time evaluations across 4 log-cycles of time;11

each log-cycle of time required 41 Laplace-space LT-AEM solutions (i.e., 164 solutions for an12

and bn). Initially, the point source causes the head to rise at both locations. The additional13

drawdown due to the point sink is observed after t = 0.75. At the observation point closest14

to the point sink, the initial rise of the head quickly becomes a drawdown after the point15

sink starts (lower curve). For large time, the heads approach steady state, because extraction16

is balanced by injection.17

Figures 3 and 4 show the case where four particles are released in the domain at the same18

time and tracked in the transient flowfield using an adaptive Runge-Kutta-Merson integration19

scheme with a specified error tolerance (e.g., see [31, §16.2]). Figure 3 shows the portions20

of the particle tracks up to the time associated with the contours. All three figures (3-5)21

illustrate the changing nature of drawdown and flow both around the impermeable obstacles22

(e.g., particles in late-time plot) and through time (comparison of early and late time contours23

and time-series head plot).24

Many of the same features are visible in this example, compared to the symmetric example25

in Figure 2: the constriction between line-doublet elements increases flow, and stagnation26

points appear along the impermeable lines, changing their positions between the early and27

late plots.28

In this example, the infinite generalized Fourier series is truncated at 12 terms, the Mathieu29

function matrix is truncated at 20, and 41 terms are used in the Fourier series inverse Laplace30

transform solution. More terms are used in the numerical inverse Laplace transform than in31

the previous example, to better represent the two separate step time behaviors (the point32

source at t = 0, the point sink at t = 0.75). Minor evidence of Gibbs’ phenomenon due to33

the numerical Laplace transform inversion is visible immediately surrounding the yet-to-be-34

activated point sink in Figure 3, due to the dense grid of calculation points (100×100, 1635

13



  

times more points than the number of velocity vectors shown) and the small contour intervals1

used. As in any Fourier series representation of discontinuous processes (here a step in time),2

the Gibbs’ phenomena can be isolated to an arbitrarily small region of time by increasing3

the number of terms in the Fourier series expansion, but they cannot be eliminated. For this4

case, superposition of two separate solutions, one for the point source and one for the point5

sink, would eliminate this behavior, but would be computationally twice as costly.6

10 Examples of transient integral line-sinks in a two-aquifer system7

Two examples are presented for transient flow to integral line-sinks in a two-aquifer system.8

The first example is for a situation with two aquifers with equal properties separated by a9

leaky layer. The top aquifer contains one line-sink that starts extracting water at time t = 0.10

At the same time, a line-source in the bottom aquifer starts to inject an equal amount of11

water. The line-source in the bottom aquifer is rotated 90◦ with respect to the line-sink in12

the top aquifer. Equipotentials in the top aquifer are shown at an early time (t = 0.1 d) and13

at a late time (t = 10 d) in Fig. (6); the same contour levels are used in both plots. The14

equipotential pattern is the same in the bottom aquifer but is rotated by 90◦. Potentials as15

a function of time at two points in the top aquifer are shown in Fig. (7); potentials in the16

bottom aquifer have equal magnitude but opposite sign. Figure (6) shows that the tangent to17

the equipotentials in the top aquifer is discontinuous when crossing the line-sink in the top18

aquifer as the line-sink takes water from the top aquifer. The tangent is continuous, however,19

when crossing the location of the line-source in the bottom aquifer (the dashed line) as the20

dashed line-sink doesn’t take water from the top aquifer. As explained in Section 7, near the21

line-sinks the integral (17) is evaluated differently than farther away. The transition occurs22

at different distances from the line-sink, depending on the values of t, and therefore λ, but23

is highly accurate and not visible in the equipotentials.24

The second example of integral line-sinks demonstrates the ability to simulate the effect of25

pumping wells near rivers in a two-aquifer system. Consider a well that starts pumping near a26

meandering river in the top aquifer of a two-aquifer system. The effect of the well is modeled27

by simulating the deviation of the head from steady-state conditions (i.e., the opposite of28

the drawdown). As the head in the river is constant, the deviation is set equal to zero. The29

stream is simulated with 30 line-sinks. The top aquifer is modeled as unconfined with a30

phreatic storage coefficient that is 100 times as high as the storage coefficient of the bottom31

aquifer. The same constant transmissivity is used for both aquifers. A well starts pumping32

in the top aquifer at time t = 0 such that the drawdown at the well screen is constant and33

14



  

equal to unity for t > 0. A contour plot of the head in the top aquifer at an early and a late1

time is shown in Fig. 8; the contour interval is 0.02. The drawdown as a function of time is2

shown at three locations in Fig. 9 (Note the different vertical scales for the top and bottom3

aquifers). Points 1 and 2 are equal distance from the well, but the drawdown at point 24

is larger, as it is farther away from the river. The relative difference in drawdown between5

points 2 and 3 is much larger in the top aquifer than in the bottom aquifer, as there is a6

sharp cone of depression near the well in the top aquifer (where the well is screened) and7

not in the bottom aquifer.8

11 Conclusions and Discussion9

Two complimentary approaches were presented for the computation of the potential for line10

elements that fulfill the modified Helmholtz equation with complex leakage factors (see Eq.11

2). Both approaches allow for the accurate computation of the potential at any distance12

from the element. The first approach is for elliptic line elements, which are combinations13

of Mathieu functions, while the second approach is for integral line elements, which are14

integrals of Bessel functions. Many groundwater flow fields are governed by the modified15

Helmholtz equation, or are governed by differential equations that may be transformed into16

the modified Helmholtz equation, including transient flow in single and multi-aquifer systems.17

The presented line elements were applied to obtain solutions for two transient flow systems18

that could not be modeled with the Laplace transform analytic element method previously:19

transient single aquifer flow with impermeable walls modeled with elliptic line-doublets, and20

transient two-aquifer flow with streams modeled with integral line-sinks.21

As with other analytic element solutions, the tradeoff between accuracy and execution speed22

is relatively simple to adjust by increasing the number of terms used in expansions, increasing23

the number of terms retained in infinite series, or increasing the discretization of poly-lines.24

There is always a point of diminishing return, and the application will drive the required25

accuracy, and the time or locations where full accuracy may not be needed. For example,26

in the elliptical element formulation, increasing the number of terms in the generalized27

Fourier series expansion and Mathieu function matrix will increase spatial resolution. In the28

same implementation, the temporal resolution is controlled by the parameters in the inverse29

Laplace transform algorithm and will not necessarily be uniformly distributed in space; a30

single element may have more numerical error associated with the inverse Laplace transform31

than others, see Figure 3. The degree of accuracy at any location and time is a combination32

of all these effects. When a large number of spatial elements are included in a simulation,33
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there may be locations where certain elements or groups of elements have negligible effect.1

A radius (or elliptical radius) may be determined, beyond which the element is skipped in2

the calculations.3

There are a number of potential applications of the presented line elements, including ap-4

plication to multi-aquifer systems with an arbitrary number of aquifers and storage in the5

leaky layers (in essence extending the work for flow to wells in multi-aquifer systems of [24]),6

periodic flow in multi-aquifer systems (extending the work of [5]), and application to steady7

linearized unsaturated flow (extending the work of [7]). Extensions to the Laplace transform8

analytic element method that can be pursued include the modeling of well bore storage and9

skin effects to accommodate solving problems that arise in aquifer test analysis (commonly10

handled with radially symmetric analytic solutions) and the modeling of three-dimensional11

flow systems.12
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Appendix A10

The Mathieu functions used here are defined in terms of product series of Bessel functions.11

There are a large number of formulas, because there are even and odd functions, and even-12

and odd-order variants of each function. Further definitions and relations can be found in13

the Mathieu function literature [1,30,9]. The expressions for modified (ℜ(q) < 0) Mathieu14

functions, when using the Morse normalization are (e.g., [29, p. 1409], [2])15

ce2n(ψ) =
∞
∑

r=0

A
(2n)
2r cos

[

2r
(

π

2
− ψ

)]

(21)16

ce2n+1(ψ) =
∞
∑

r=0

B
(2n+1)
2r+1 sin

[

(2r + 1)
(

π

2
− ψ

)]

17

18

19

se2n+1(ψ) =
∞
∑

r=0

A
(2n+1)
2r+1 cos

[

(2r + 1)
(

π

2
− ψ

)]

(22)20

se2n+2(ψ) =
∞
∑

r=0

B
(2n+2)
2r+2 sin

[

(2r + 2)
(

π

2
− ψ

)]

21

22
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Ke2n(η) =
∞
∑

r=0

A
(2n)
2r

A
(2n)
0

Ir(v1)Kr(v2) (23)24

Ke2n+1(η) =
∞
∑

r=0

B
(2n+1)
2r+1

B
(2n+1)
1

[Ir(v1)Kr+1(v2)− Ir+1(v1)Kr(v2)]25
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1

Ko2n+1(η) =
∞
∑

r=0

A
(2n+1)
2r+1

A
(2n+1)
1

[Ir(v1)Kr+1(v2) + Ir+1(v1)Kr(v2)] (24)2

Ko2n+2(η) =
∞
∑

r=0

B
(2n+2)
2r+2

B
(2n+2)
2

[Ir(v1)Kr+2(v2)− Ir+2(v1)Kr(v2)]3

4

where v1 = e−η√q, v2 = eη
√
q. The Morse normalization makes (23) and (24) simpler by5

enforcing abs(ce2n(0)) = 1 on A(2n), abs(se′2n+1(0)) = 1 on A(2n+1), abs(ce2n+1(0)) = 1 on6

B(2n+1), and abs(ce2n+2(0)) = 1 on B(2n+2). The columns of A(2n) are the eigenvectors of7

(25); there are similar matrices that result in the other A and B matrices [35].8
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(25)9

When q = 0, (25) is diagonal, and the eigenvalues are the square roots of the diagonal10

elements; cen(ψ) becomes cos(nθ) and the line-element becomes a point. As q increases11

(e.g., as t → 0, |p| → ∞, or as L or KH/S increases), the matrix becomes less diagonally12

dominant, and the resulting Mathieu functions are less like sine/cosine functions (e.g., see13

Fig. 2 in [21]), requiring a larger matrix to approximate them and therefore more terms to14

approximate the Mathieu functions accurately. For both high orders and extremely large15

q, numerical cancellation will plague ZGEEV, regardless of matrix size (e.g., [34]). In the16

Mathieu function literature, it is recommended to use asymptotic expressions for the Mathieu17

characteristic numbers when q becomes very large, but their use for general q is complicated18

by the location of branch points and branch cuts in the complex q plane (e.g., [25]). The19

current implementation can accurately simulate a single line source with q ≤ 104.20
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Figure captions1

Figure 1. Elliptical coordinates; η is the radial coordinate, ψ is the azimuthal coordinate,2

a is the semi-major distance, and b is the semi-minor distance3

Figure 2. Flow to a well with four impermeable barriers. Equally spaced contours of head4

at a snapshot in time (left), vectors indicating flow direction and magnitude – color fill5

proportional to log10 flow – at same time (right)6

Figure 3. Early flow due to a point source. Equally spaced contours of head at t = 0.7 with7

early portions of four particle traces (left). At right, vectors indicating flow direction and8

magnitude at same time (color fill proportional to log10 flow); stars indicate locations of9

time series plots in Fig. 510

Figure 4. Flow between equal-strength opposite-sign point sink and source. Equally spaced11

contours of head at t = 0.775 with four particle traces (left). At right, vectors indicating12

flow direction and magnitude at same time (color fill proportional to log10 flow)13

Figure 5. Time series of modeled head through time at two (x,y) locations: lower curve14

(closer to pumping well) at (0.0,−0.1) and upper curve (closer to injection well) at (−0.2,0.1).15

Injection began at t = 0, pumping began at t = 0.75.16

Figure 6. One line-sink in top aquifer (solid black line) and one line-source in bottom aquifer17

(dashed black line). Equipotentials in top aquifer at t = 0.1 d (left) and t = 10 d (right).18

Same contour levels are shown in both plots.19

Figure 7. Drawdown at two locations for case of Fig. (6).20

Figure 8. Head contours in the top aquifer for a well located near a meandering river.21

Contours are shown at an early time (left) and a late time (right). Head at the well is -1,22

and contour interval is 0.02.23

Figure 9. Drawdown at three locations in top aquifer (left) and bottom aquifer (right).24

Vertical scales differ between two graphs. Locations are shown in Fig. (8)25
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Fig. 1. Elliptical coordinates; η is the radial coordinate, ψ is the azimuthal coordinate, a is the

semi-major distance, and b is the semi-minor distance
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Fig. 2. Flow to a well with four impermeable barriers. Equally spaced contours of head at a snapshot

in time (left), vectors indicating flow direction and magnitude – color fill proportional to log10 flow

– at same time (right)
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Fig. 3. Early flow due to a point source. Equally spaced contours of head at t = 0.7 with early

portions of four particle traces (left). At right, vectors indicating flow direction and magnitude at

same time (color fill proportional to log10 flow); stars indicate locations of time series plots in Fig.

5
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Fig. 4. Flow between equal-strength opposite-sign point sink and source. Equally spaced contours

of head at t = 0.775 with four particle traces (left). At right, vectors indicating flow direction and

magnitude at same time (color fill proportional to log10 flow)
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Fig. 5. Time series of modeled head through time at two (x,y) locations: lower curve (closer to

pumping well) at (0.0,−0.1) and upper curve (closer to injection well) at (−0.2,0.1). Injection

began at t = 0, pumping began at t = 0.75.
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Fig. 6. One line-sink in top aquifer (solid black line) and one line-source in bottom aquifer (dashed

black line). Equipotentials in top aquifer at t = 0.1 d (left) and t = 10 d (right). Same contour

levels are shown in both plots.

Fig. 7. Drawdown at two locations for case of Fig. (6).
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Fig. 8. Head contours in the top aquifer for a well located near a meandering river. Contours are

shown at an early time (left) and a late time (right). Head at the well is -1, and contour interval is

0.02.
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Fig. 9. Drawdown at three locations in top aquifer (left) and bottom aquifer (right). Vertical scales

differ between two graphs. Locations are shown in Fig. (8)

28


