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The Laplace-transform Analytic Element Method (LT-AEM) is a tran-
sient extension of the AEM (begun by Otto Strack at U. Minnesota [3]
circa 1980), which utilizes a numerical inverse Laplace transform algorithm
(L−1) to compute time-domain solutions from high-accuracy AEM solu-
tions in Laplace space [1, 2].

The Laplace-transformed diffusion equation is the modified Helmholtz
equation, when we assume a zero initial condition. Non-zero initial condi-
tions are treated using impulse area sources.
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LT-AEM combines analytic solutions so that specified boundary conditions
are enforced. Once the coefficients of the LT-AEM solution are known for
a given geometry, the solution can be computed at any point in space.
This allows very accurate calculation of particle pathlines in transient flow
fields.

Particle Integration

Particle location, z(ξ, t − t0) (where ξ is a vector starting location, in the
Lagrangian sense), is found in terms of the velocity, v(x, t) (where x is a
standard Eulerian coordinate vector), by

dz(ξ, t − t0)

dt
= v(x, t) −→ zξ(t − t0) = zξ(t0) +

∫ t

t0

v(x, t)

An adaptive Runge-Kutta algorithm is used to estimate the integral to a
given relative accuracy, by knowing the relative accuracy of two related
4th-order methods.

Runge-Kutta is a type of 4th-order predictor-corrector algorithm, where 4
specific values of velocity (numbered arrows above) are combined to esti-
mate the final particle location at t + ∆t, for a given starting location and
time.
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These plots show traces of particles released along the left edge of each figure. On the left, a single pumping well operates at a constant rate until
the particle are captured, while on the right well A shuts down and well B starts up at t = 30. Dot colors indicate time since pumping began. Kbg is
the background hydraulic conductivity (white areas in the figures).

LT-AEM Benefits

Benefits to using LT-AEM for transient particle tracking include

Accuracy: No interpolation; compute results at any point or time

Derivatives: Analytically compute derivatives in Laplace space

∞ Domain: No artificial domain boundaries, solution valid → ∞;
computational domain can be either bounded or infinite.

Geometry: Superimpose fundamental elements/geometries

Further applications of LT-AEM are underway to both real-world
aquifer test interpretation and the use ofMarkov chainMonte Carlo
inverse models to explore problems where geometry, rather than
aquifer parameters, are unknown.
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Streaklines and streamlines are illustrated using a similar geome-
try to the above figure, but slightly different aquifer properties. Red
circular elements are more permeable here, compared to top figure,
as the streaklines are very distorted for the elements with larger K

contrast in the top figure.


