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Abstract:  

While tomographic inversion has been successfully applied to laboratory- and field-scale 

tests, here we address the new issue of scale that arises when extending the method to a 

basin.  Specifically, we apply the hydraulic tomography concept to jointly interpret four 

multi-well aquifer tests in a synthetic basin to illustrate the superiority of this approach to a 

more  traditional  Theis  analysis  of  the  same  tests.  Transmissivity  and  storativity  are 

estimated for each element of a regional numerical model using the geostatistically-based 

SSLE inverse solution method. We find that hydraulic tomography inversion is an effective 

strategy for incorporating data from potentially disparate aquifer tests into a basin-wide 

aquifer  property  estimate.  The  robustness  of  the  SSLE  algorithm  is  investigated  by 

considering the effects of noisy observations, changing the variance of the true aquifer 

parameters, and supplying incorrect initial and boundary conditions to the inverse model. 

Ground water flow velocities and total confined storage are used as metrics to compare true 

and estimated parameter fields; they quantify the effectiveness of hydraulic tomography 

and SSLE compared to a Theis solution methodology.  We discuss alternative software that 

can be used for implementing tomography inversion.
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Introduction

Managing ground water resources requires knowledge of aquifer property distributions, 

since  they  affect  water  movement  and  solute  transport.   This  understanding  is  often 

developed and tested with regional numerical ground water flow models, which are used 

for  simulation,  prediction,  and  scenario  analysis.  Regional  models  facilitate  long-term 

management of water resources, where they can be used for both evaluation and mitigation 

of supply and quality issues.

In ground water model calibration we seek to best represent a complex natural system with 

an idealized numerical model at the appropriate scale of interest.  The scale depends on the 

intended use of the calibrated model (e.g., flow vs. transport predictions) and the desired 

detail needed in the predictions.  Many regional ground water studies do not attempt to 

build detailed heterogeneity into large scale (tens to hundreds of kilometers)flow models, 

due to  the prohibitive costs of detailed sampling over large areas and the computational 

limits  on  calibrating  multi-scale  heterogeneity  in  the  model.   Regional  geologic  or 

hydrologic units are often treated as zones,  assumed to be homogeneous with a single 

effective parameter value (e.g., Barlebo et al. [2004]).  This zoned representation may offer 

computational advantages, but it can only yield large-scale effective properties, which are 

best for predicting “ensemble” behaviors of a ground water system [Yeh, 1992; Yeh et al., 

2007].

In regional studies that include local-scale heterogeneity (i.e., heterogeneity smaller than 

the hydrologic unit, at the scale of several model cells), the parameter distribution is often 
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estimated from a steady-state or pre-development head distribution (e.g., Yeh and Mock 

[1996]).   Heterogeneous  transmissivity  fields  are  estimated  by  manually  adjusting 

parameter values in model cells or zones to match simulated and observed hydraulic heads. 

More advanced approaches use automated calibration algorithms (e.g.,  PEST [Doherty, 

2007] or UCODE [Poeter et al., 2005]) to minimize the residual between observed and 

simulated heads [Barlebo et al., 2004].  Steady-state calibrations are limited to estimating 

transmissivity (T), and few regional studies attempt to calibrate ground water flow models 

using  transient  head  measurements  due  to  the  large  increase  in  complexity  and 

computational effort.

Basin-scale  transient  model  calibrations  are  often  ill-posed  and  non-unique  due  to 

difficulties collecting the necessary and sufficient information to make an inverse problem 

well-posed  [Yeh  et  al.,  2007].   As  a  result,  there  are  many  non-unique  parameter 

distributions that equally fit sparse head observations.  In other words, traditional inverse 

modeling  efforts  often  yield  ambiguous  aquifer  characterization.   Because  of  the 

uncertainty inherent in aquifer parameter and boundary condition characterization, many 

modelers  have  developed  misleading  predictive  models  of  ground  water  flow  and 

contaminant  migration.  Because of  this,  some have  seriously  questioned the  ability  to 

validate ground water flow models at all [Konikow and Bredehoeft, 1992; Oreskes et al., 

1994; Bredehoeft, 2003].

 To  improve  our  ability  to  adequately  characterize  and  solve  inverse  ground  water 

problems, we propose utilizing hydraulic tomography (HT). Many researchers have shown 
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it can be used to characterize heterogeneous hydraulic properties, including Tosaka et al. 

[1993], Gottlieb and Dietrich [1995], Vasco et al. [2000], Yeh and Liu [2000], Bohling et 

al.  [2002],  Brauchler  et  al.  [2003],  and Zhu and Yeh [2005 and 2006].   HT involves 

collecting responses throughout an aquifer due to a sequence of overlapping aquifer tests, 

then calibrating a heterogeneous ground water flow model using the observed responses 

from all the tests.   Multiple sets of aquifer tests and their observed responses improve the 

inverse problem, since tests cross-validate each other.  As a result, the estimated hydraulic 

property fields become more detailed and less uncertain than those computed from a single 

set of data.

HT has been applied successively to small-scale synthetic aquifers [Yeh and Liu, 2000; Zhu 

and Yeh, 2005 and 2006; Hao et al., 2008], laboratory sandboxes [Liu et al., 2002; Liu et 

al., 2007; Illman et al., 2007], and plot-scale fields [Vesselinov et al., 2001; Bohling et al., 

2007; Straface et al., 2007; Li et al, 2007].  In these small-scale studies it is possible to 

stress the entire domain with each pumping well, providing new information throughout 

the domain from each pumping event.  We propose using regional-scale HT to estimate T 

and storativity (S) distributions for a regional flow model, where the main new challenge is 

determining how to adequately stress the entire aquifer.  Unlike smaller-scale applications 

of HT, it is not possible to pump a single well causing a response throughout the aquifer; 

both the pumping rate and test length would be unreasonably large.  Realistically, a single 

aquifer  test  can  only  stress  a  portion  of  a  large  aquifer  and  only  cause  measurable 

drawdown in a subset of a basin-wide observation network.  At the regional scale, we 

reformulate  HT  as  an  interference  problem;  the  head  distribution  due  to  multiple 
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simultaneous pumping wells  is  observed using a monitoring well  network as might  be 

found in a municipal water supply or remedial well field (off-duty pumping wells can serve 

as observation wells).  Rather than successively pumping from individual wells, we cycle 

through sets of pumping wells.  In this way, the regional aquifer is repeatedly stressed to 

the fullest possible extent  using existing wells.

We investigate the HT approach for estimating aquifer properties in a regional-scale ground 

water  model;  the  method  results  in  both  more  detailed  (higher  resolution)  and  more 

trustworthy (lower uncertainty) estimates.  An improved estimate of aquifer properties is 

necessary  to  improve  the  reliability  of  predictions  made  with  a  calibrated  model. 

Estimating aquifer parameters using the sequential successive linear estimator (SSLE, Zhu 

and Yeh, 2005) with tomographic test data leads to better predictions of flow velocities and 

estimates of total storage for the basin, compared to traditional methods.  The numerical 

analysis  in  this  study  was  completed  on  a  personal  computer,  demonstrating  that  HT 

inversion can be implemented using existing computer resources.

In this work we use a synthetic regional confined aquifer to minimize unknown sources of 

error (e.g., measurement and model errors) that would complicate the analyses.  Initially, 

we demonstrate that HT can be used on a regional scale, then we investigate the robustness 

of the method by changing the variance in the true field, adding random error to the head 

observations, and reducing the number of pumping events.  Finally, HT was applied using 

observations of drawdown, rather than head, to investigate the effects of unknown initial 

and boundary conditions.

Kuhlman, Hinnell, Mishra & Yeh 5

7

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

8

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



Methods

We solve  the  HT inverse  problem using  the SSLE algorithm which is  similar  to  that 

developed by Yeh and Liu [2000] and Zhu and Yeh [2005].  The SSLE algorithm is an 

extension of the SLE (successive linear estimator), that was developed for solving spatially 

variable parameter inverse problems using a geostatistical  framework [Yeh et  al,  1996; 

Zhang and Yeh, 1997; Hughson and Yeh, 2000]. The implementation of the SSLE used here 

is coupled with the finite element flow model VSAFT2 [Yeh et al., 1993] (available for free 

download at http://www.hwr.arizona.edu/yeh).  We qualitatively discuss the key features of 

this approach; details on the SSLE are found in Zhu and Yeh [2005].

Because  high-resolution  parameter  estimates  are  the  desired  result  of  tomographic 

inversion, we independently estimate parameter values (T and S) in each model element; 

this leads to a large number of free parameters.  The tomographic approach results in two 

hurdles to overcome: 1) the large computational effort required to estimate the sensitivity 

of  model  parameters  model  predictions  at  observation  locations,  and  2)  the  need  for 

additional constraints to reduce the degrees of freedom in the solution, since there are more 

estimable parameters than calibration data (an ill-posed inverse problem).

The SSLE approach addresses both of these problems.  First, the parameter-observation 

sensitivities required for the inverse problem are computed using the adjoint  approach 

[Sykes et al., 1985; Sun and Yeh, 1992], rather than using the perturbation approach (as in 

PEST or UCODE).  The perturbation approach changes each parameter  independently, 
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running the model forward to compute the corresponding model prediction change.  With 

the perturbation inverse approach, a problem with 500 estimable parameters would require 

501 (forward difference) or 1001 (central difference) independent forward model runs per 

iteration.   For  the  adjoint  approach,  the  effort  to  compute  the  model  sensitivities  is 

proportional to the number of observation data. This benefits problems with a large number 

of  parameters  and  sparse  observations,  allowing  sensitivities  to  be  computed  more 

efficiently.  Secondly, due to the geostatistical foundation upon which SSLE is built, the 

parameters being estimated (T and S) are not allowed to vary arbitrarily in space, but rather 

their distribution follows a geostatistical framework.  Regularization (the observation that 

parameters vary “smoothly” in space  [Tikonov and Arsenin, 1977]) is also a means of 

constraining the spatial distribution of parameters (implemented in PEST). The difference 

between the geostatistical  and regularization approaches is  analogous to the distinction 

between kriging and inverse distance as interpolation schemes. Both kriging and SSLE 

incorporate additional geostatistical knowledge into their estimates, while Tikhonov-style 

regularization  and  inverse  distance  squared  are  purely  empirical  approaches.   The 

geostatistical  framework  does  have  additional  requirements  (estimates  of  the  mean, 

variance and directionality of T and S), but the accuracy of these a priori estimates is not 

essential to the success of the algorithm in HT analyses [Yeh and Liu, 2000].

Description of synthetic problem

The synthetic confined aquifer used here was designed to be realistically complex, while 

simple  enough  to  allow  straightforward  interpretation  of  the  results  and  the  timely 

execution of many runs required for the robustness analysis.  The 2D model represents a 
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depth-averaged heterogeneous 54 km × 27 km aquifer, bounded by a river flowing west to 

east on the western, northern and eastern boundaries and a mountain block on the southern 

boundary (see Figure 1).  The aquifer has two large bedrock outcrops which are represented 

in the model by "islands" of no-flow cells (in Figure 1 inactive cells are gray).  The finite 

element mesh consists of 519 active square elements, each 1200 m on a side .  The river is 

a specified head boundary condition, ranging linearly from 1015 m to 1000 m from west to 

east (dashed boundaries in Figure 1). Specified flux boundary conditions (inflow) were 

used in four separate  sections along the southern boundary to simulate fluxes into the 

model domain from neighboring basins (dotted boundaries in Figure 1).

A random true T field (Figure 2) was generated with an arithmetic mean of 300 m2/day and 

variance of ln(T) of 2.0, while the S field had an arithmetic mean of 0.001 and variance of 

ln(S) of 2.0.  Transmissivity was assumed to be isotropic at the scale of the model elements 

(Tx = Ty), but both the T and S fields were assumed statistically anisotropic at the scale of 

the domain.  The correlation scale was 20 km in the east-west direction and 8 km in the 

north-south direction.  The random T and S fields are uncorrelated; they utilized different 

random seeds during their generation.  Initial conditions were the results of a steady-state 

simulation with no pumping.

HT was used to estimate the  T and  S fields by stressing the aquifer simultaneously with 

multiple pumping wells in a manner analogous to municipal pumping or a "pump and treat" 

remediation system.  The synthetic well field was comprised of 70 wells: 20 pumping and 

50 observation wells.  All wells were located randomly within the domain using a Latin 
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hypercube approach to  limit  spatial  clustering.   While  no specific  effort  was  made to 

optimize the wellfield for aquifer parameter estimation, the subset of 20 pumping wells was 

visually  selected to  provide good spatial  distribution of  pumping wells  throughout  the 

synthetic aquifer.   Pumping wells  were assigned to  one of four events  such that  each 

pumping event stressed most of the aquifer, resulting in overlap between the stressed areas 

of different pumping events.  The pumping well locations are shown as open symbols in 

Figure 1: triangles are wells pumped in pumping event one, squares in event two, stars in 

event three, and circles in event four.  Each pumping event is an aquifer test that lasted 14 

days, during which each of the five wells was pumped at 2000 m³/day (367 gpm).  The 

initial  hydraulic  head  distribution  for  each  pumping  event  was  the  steady-state  head 

distribution.  The aquifer response to each pumping event was observed at 50 observation 

wells (filled dots in Figure 1).  For this example we did not include the pumping wells from 

the other pumping events in the set of observation wells, although in reality one would 

include as many observation wells as possible.

Hydraulic  head  was  sampled  continuously  at  each  observation  well,  but  only  four 

observation times from each pumping event were used in the inversion: three at early time 

and one at late time.  These observation times were chosen to minimize the computational 

effort in the SSLE inversion, while providing sufficient information to constrain the aquifer 

parameter estimates.  For noise-free data, observations through time at one location are 

highly correlated and each new temporal observation contributes little new information 

[Zhu and Yeh, 2005].  
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The true and estimated parameter fields were compared using spatial distribution maps, 

scatter plots, and summary statistics.  Good parameter estimates produce distributions that 

are visually "similar" and scatter plots with data clustered along the 1:1 diagonal.  High 

correlation coefficient (ρ) indicates a significant linear relationship between the values of 

the two datasets, while high rank correlation coefficient (ρrank) indicates patterns of highs 

and lows are well correlated, regardless of numerical values [Isaaks and Srivastava, 1989]. 

The L1 and L2 norms indicate the differences in the log mean (bias), and log standard 

deviation of the two datasets respectively [Yeh and Liu, 2000] (low norm values indicate 

better fit).

Quantitative comparisons were also made between the true and predicted overall storage 

for the entire basin.  When managing ground water basins resources, accurate information 

regarding the amount of water available from storage is essential.  Lastly, we compared 

observed  and  simulated  velocity  fields  (vx and  vy),  which  are  required  in  transport 

simulations.  While  head is diffuse by nature and therefore easy to match, leading to non-

unique solutions, solute transport is governed by advection (flow velocity, the gradient of 

head),  which  is  much  more  sensitive  to  aquifer  property  distributions.   Two  head 

distributions  can  match  observed  point  head  measurements  equally  well,  but  their 

corresponding flux distributions (and solute transport  behaviors) may be very different. 

Velocity field comparisons provide a measure of how useful the simulation would be for 

making transport predictions.
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Results

Estimation of T and S using Theis solution

Aquifer parameters (T and  S) are often estimated for real-world applications using the 

Theis solution  for  drawdown from a  pumping  well,  even  if  some  of  its  fundamental 

assumptions are known to be violated.  The  Theis solution is 2D (depth-averaged) and 

assumes an infinite homogeneous aquifer.  We modeled the drawdown observed during 

each pumping event using the Theis solution to both illustrate the inappropriateness of a 

homogeneous solution for interpreting heterogeneous regional scale pumping tests and to 

provide a comparison to the HT results.

We estimated T and S values from the “observed” model drawdown at observation wells. 

For simplicity we assigned the estimated values to the location of the observation well, 

resulting in 50 estimates of  T and S for each of the four pumping events.  Drawdown at 

each observation well is due to pumping at five pumping wells.  T and S are estimated by 

matching  the  observed  drawdown  to  the  drawdown  predicted  by  summing  the  Theis 

solutions for the five pumping wells in a homogeneous infinite aquifer.  PEST was used to 

minimize  the  sum of  squared  residuals  between the  observed and the  Theis-simulated 

drawdown.   The  estimated  parameter  values  at  all  50  observation  locations,  for  each 

pumping event, were then kriged to the flow simulation grid to generate the eight estimated 

parameter fields shown in Figures 3a and 3b.  The eight model variograms used for kriging 

were derived by least-squares fitting an anisotropic exponential model to the experimental 

variograms created from the Theis results.
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Due to the large domain, the simultaneous pumping of the five wells during each pumping 

period does not cause significant interference between the wells.  The radius of influence of 

the pumping wells after 14 days of pumping (distance from the well to 1 cm of drawdown) 

varies between 4 km and 15 km.  However, more importantly for HT, at least 1 cm of 

drawdown was observed in 46/50 of the observation wells during at least two of the 

pumping events and drawdown was observed in 26/50 of the observation wells for all of 

the pumping events. 

We assigned parameters to observation locations, rather than pumping locations because 

the latter  would have resulted in  50 parameter  estimates  associated with 20 locations, 

requiring cokriging or additional averaging to be utilized in the flow model.   T and  S 

estimates could also have been attributed to a "representative" volume or location in the 

aquifer,  but  for  heterogeneous  aquifers  Theis-predicted  values  may  change  with  time, 

orientation, and location [Wu et al., 2005]. This makes interpretation of a representative 

location or  volume difficult,  especially with the presence of  boundaries.   Through the 

kriging of the intermediate point results onto the final flow simulation grid, we effectively 

volume-averaged the Theis results in an objective and straightforward manner.

Visually comparing the Theis-estimated and true parameter fields (Figures 3 and 2) one can 

see that each pair of estimated T and S fields is different and a poor estimate of the true 

fields.  As expected, the results of the Theis analysis are sensitive to boundaries.  While Li 

et al [2007] indicate Theis-based analyses can lead to estimates that agree, on average, with 

tomographic results, they did not have significant boundary conditions in their problem. 
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The curve matching produced high values of  T near the boundaries of the domain (see 

Figure 3a) while high values of S were consistently predicted in the south-west corner of 

the domain (see Figure 3b).  The Theis analysis has produced four different distributions of 

T and S which represent the head observations associated with the four pumping events.  It 

is  clear  that  the  Theis  solution  doesn't  give  any  useful  information  regarding  the 

distribution of  parameters  [Li  et  al.  2007],  because  it  is  a  homogeneous  model.   The 

hydrogeologist is left to average or decide which estimated parameter field they feel best 

represents  the  true  field.   More  realistically,  Theis  analyses  would  be  performed 

individually on each pumping test,  potentially using distance drawdown to incorporate 

multiple  observation  wells  at  one  time,  but  the  hydrogeologist  may  be  unaware  that 

different overlapping tests can lead to markedly different results  using a homogeneous 

model such as the Theis solution.

Although there are obvious limitations to using the Theis solution to analyze drawdown in 

a finite, heterogeneous domain, the exercise was done to illustrate two points.  First, the 

results from the four pumping events, which used different pumping wells (but had many 

observation wells  in common),  do not  produce identical  or even similar  results.   This 

illustrates the fact that the Theis solution doesn’t simply “average out” the heterogeneity 

around the pumping well [Wu et al, 2005].  Aside from averaging or possibly cokriging, 

there is no straightforward way to combine the data collected in  the four pumping events 

into a single estimate (kriging does not allow for multiple values at the same location). 

Secondly, although the shortcomings of the Theis solution are “obvious” in this synthetic 

example, it  is common practice to use Theis type curve analysis, with far less data, to 
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analyze aquifer  test  results.   In  a  real-world case,  unconfined,  leakage,  skin,  wellbore 

storage or partial penetration effects would also be compounded upon the boundary and 

heterogeneity artifacts seen here. Here, these effects can truly be ignored, because the data 

are synthetic.  The effects of ignoring wellbore storage or unconfined behavior may have a 

larger  impact  on  predictions  than  the  effects  of  ignoring  distant  boundary  conditions, 

depending on field conditions.

Full tomography results

T and  S fields were estimated using SSLE with error-free observations of head from 50 

observation wells divided into the same four pumping events used in the Theis analysis. 

The estimated fields (Figure 4) compare favorably with the true fields (Figure 2).  Scatter 

plots of the true and estimated parameters (Figure 5) show a low degree of bias (small L1 

norm).  Outlier parameter estimates are primarily located where the model is insensitive to 

parameter values: in cells adjacent to specified head boundaries and far from observation 

wells.  The true and estimated T and S are well correlated (large ρ and ρrank ).  Summary 

statistics are listed for all the SSLE scenarios in Tables 1a (for T) and 1b (for S).  Columns 

1-4 give statistics for the base case, with no data noise and correctly specified boundary 

and initial conditions.  Columns 5 and 6 show the effects of adding noise to observations 

and using the wrong boundary conditions (using all four pumping events).  The last two 

columns give the statistics corresponding to the scenarios where the true random T and S 

fields were generated using the same random seed, but different variances.

Since ground water velocity controls the advective transport of solutes, velocity fields were 
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compared  as  a  means  to  quantify  the  quality  of  the  SSLE calibration.   The  x and  y 

components of the velocity are well correlated with small L1 and L2 norms (Figure 6).  The 

SSLE-estimated  T and  S fields would produce a reasonable estimate of advective solute 

transport, since accurate flow velocities are the most important part of a solute transport 

model.

Comparing the estimated and true total confined storage for the entire basin is another form 

of model validation.  This quantity is found by summing the product of S and the area for 

each element, for the all elements in the domain.  The area of all 519 model elements is 

7.4736×108 m², while the sum of the  S (ΣS) in all elements is 0.4858 for the true field, 

giving a true total storage of 3.63×108 m³ (8225 acre-ft). The results of SSLE inversion 

gave  ΣS = 0.6425 (overestimation by 32%), while the Theis approach gave  ΣS = 3.029, 

2.302, 2.436, and 3.646 for events 1 through 4, respectively; the average Theis result is 

2.853 (overestimation by 587%).   While  SSLE does  overestimate  S,  it  is  an order  of 

magnitude better than the Theis solution.  We interpret that because of the lack of boundary 

conditions in the Theis solution, it must overcompensate by overestimating the amount of 

water coming from aquifer storage.  Overestimating available storage could easily lead to 

fallacious  management  decisions,  by  basing  long-term  strategies  on  misinformation 

regarding available ground water.

Robustness analysis

We tested the robustness of the HT inversion by changing several aspects of the synthetic 

example.  First, we repeated the analysis with fewer pumping events, illustrating how HT 
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leads to an improved estimate with additional information.  Second, we added zero-mean 

Gaussian noise with a standard deviation of 0.1 m to the head data, to better replicate field-

measured observations.  Third, the HT analysis was repeated with true T and S fields with 

variances of half (σ²ln(T) =  σ²ln(S) = 1) and 1.5 times (σ²ln(T) =  σ²ln(S) = 3) the levels of the 

original  analysis.   Finally,  we reformulated the HT problem in terms of drawdown to 

minimize the effects of potentially unknown initial and boundary conditions.  

Decreasing number of pumping events

One of the main strengths of HT is the ability to use multiple datasets to estimate a single 

coherent  parameter  set.   To  illustrate  the  improvements  from inverting  multiple  tests 

together, the analysis was repeated, each time removing more pumping events from the 

analysis.  Inversion was performed using pumping events one through three, one and two, 

and pumping event one on its own.  The scatter plots of true versus estimated T and S for 

each analysis are presented in Figure 7, while the results from using all  four pumping 

events are shown in Figure 4.

The T estimate improved as more pumping events (each with different pumping wells but 

the same observation locations) are inverted together. The cloud of points, representing T in 

each element of the flow model, moves closer to the 1:1 line, as two and three pumping 

events  are  jointly  inverted.  This  type  of  improvement  is  typical  when  inverting 

tomographic  aquifer  tests.  Each  pumping  event  adds  new  information  to  the  overall 

estimate of the aquifer parameters, but no single pumping event by itself results in better 

parameter estimates than analyzing two datasets  simultaneously.   The addition of each 
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pumping event to the inversion process produces a smaller incremental improvement to the 

estimated  parameters  than  the  last  addition,  illustrating  the  diminishing  returns  off 

including similar data.  Addition of a fourth pumping event noticeably decreases the quality 

of the estimated T field, while the quality of the estimated S field remains approximately 

the same, as can be seen in the summary statistics in Table 1.  Using all four pumping 

events together may not produce optimal results for both parameters (in a non-synthetic 

case this would be difficult to quantify), but the SSLE results remain a very good estimate 

of the parameter distributions.  In all scenarios, we used an SSLE convergence criterion of 

a 5% relative change in the estimated parameter variance.

Random error added to observations

For the baseline analysis, the observations were noise-free. In this case we corrupted the 

data with unbiased Gaussian noise with a standard deviation of 0.1 m, to simulate more 

realistic  observations.   Corrupting  the  observations  smooths  the  parameter  estimates, 

however, the estimated parameter fields still generally agree with the true fields (Figure 

8a), as can be seen by the high ρrank values.  Corrupting the data effectively decreases the 

pumping well radius of influence (decreasing the signal to noise ratio), resulting in fewer 

observation  wells  with  significant  drawdown signal,  and  increasing  the  scatter  of  the 

predicted flow velocities (Figure 8b).  For the noisy data analysis the same four observation 

times were used from each observation well and the same convergence criterion was used. 

This criterion aims at avoiding perfect fits between the observed and simulated heads at the 

observation wells; this is useful when the observations are noisy.
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  The data can be smoothed before using them in the inversion process (e.g., with a moving 

average or wavelet smoothing) or the forward and inverse models will effectively do the 

smoothing,  because  the  models  cannot  perfectly  match  noisy  data.  To  improve  the 

convergence  of  the  inverse  method,  unexplained  (especially  biased)  noise  should  be 

investigated and dealt with if possible, to reduce its impact on the inverse solution [Xiang 

et al, 2008].

Different variances in true T and S fields

In the previous cases, the true T and S fields were generated for a variance in  ln(T) and 

ln(S) of 2.  Here we examine the effect of using a smaller and larger log variance (σ²ln(T) and 

σ²ln(S) of  1  and 3).   Increasing  the  variance  in  the  true  field  resulted  in  much  poorer 

parameter estimates.  Both ρ and ρrank are smaller and the norms and larger (see columns 7 

and 8 in Tables 1a and 1b).  The larger T and S parameter ranges associated with the larger 

variances are more difficult to estimate.  As expected, the parameter estimates from the 

case with a lower variance are more accurately estimated (the true parameter fields are 

smoother) due to less nonlinear relationship between the head and the parameters [Yeh et 

al, 1996].

Drawdown-based estimation

For all previous analyses, the true initial conditions were used and the boundary conditions 

used to generate the initial condition were also used in the inverse model.  In a real world 

case, aquifer tests are rarely begun from equilibrium and the aquifer's boundary conditions 

are often poorly known, therefore a scenario was performed where these were specified 
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incorrectly.

A zero-drawdown specified head boundary condition was specified at all elements around 

the  outside  edge  of  the  domain  –  even  for  the  specified  flux  and  no-flow boundary 

conditions in the true model (the two bedrock outcrops were still specified as no-flow). At 

all the observation locations, the drawdown from the pre-test condition was used in place 

of the simulated head. The results from this exercise, shown in Figure 9a and summarized 

in column 6 of Tables 1a and 1b, indicate that very good results are still obtainable, even 

when  the  initial  or  boundary  conditions  are  poorly  known.   The  predicted  velocity 

components (Figure 9b) are not as good as in the case where the initial  condition and 

boundary conditions are perfectly known, but the prediction is still reasonable, indicated by 

the high ρrank values.

Discussion

While a synthetic study can never take into account all the uncertainty potentially present 

in  real-world  field  problems,  such  as  the  potential  mis-characterization  of  a 

hydrologic system, it can isolate the issues related to data availability and aquifer test 

design. In this case we have used the same model type and grid to compute the “true” 

and  inverse  solutions,  therefore  there  is  no  estimation  error  due  to  epistemic 

uncertainty.
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Viability of other methods

This work stresses the benefits of using tomographic aquifer tests, and their inversion can 

be carried out with a variety of different tools. All the results computed here were done 

using SSLE and the finite element 2D flow model VSAFT2.  Less than 10 iterations in 

SSLE were needed to meet the specified convergence criterion. 

Qualitative comparisons of the possible combinations of different “machinery” that could 

be used to implement the HT inversion outlined here is beyond the scope of this paper, but 

a similar implementation could be done using public domain software such as MODFLOW 

[Harbaugh, 2005], PEST, or UCODE which utilize the perturbation approximation to the 

sensitivity.  

If other methods are used and aquifer properties in each element of the forward model are 

estimated, then a regularization technique must be employed to reduce the effects of over-

parameterization.  One could effectively increase the number of observations by adding 

regularization “observations” that the parameter distribution is smooth. Alternatively, one 

could decrease the number of parameters being estimated. This can be accomplished using 

a pilot point method [RamaRao et al., 1995], where kriging fills in the model grid with 

aquifer parameters from a smaller set of estimated values. Another means of accomplishing 

this is through the singular value decomposition threshold method [Doherty, 2007], where 

only those parameters with large singular values in the estimation process are included. 

This reduces the dimensionality of the inverse problem without choosing a priori which 

parameters are more important, or where pilot points should be located.

20 Kuhlman, Hinnell, Mishra & Yeh

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

30

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



Kalman filters  are  another  class  of  candidate  inversion algorithm;  they are  popular  in 

control and systems engineering, and have been applied hydrologic problems in different 

ways [Chen and Zhang, 2006; Goegenbeur and Pauwels, 2007].  They are more general 

than non-linear  least  squares,  since model  and measurement  noise can be incorporated 

directly into the inversion process, obviating the need for smoothing noisy data, but they do 

not have any means of incorporating the spatial correlation between the parameters into the 

estimation process, as SSLE does. 

Conclusions

Based on the numerical experiments performed on the given synthetic regional domain, 

transient HT inversion using the SSLE is shown to work well for estimating the aquifer 

parameters T and S on a regional scale. While all the simulations performed in this work 

have been done using the SSLE adjoint-based inverse method, this is not the only option.

We address the test scale issue that arises from applying HT to a basin-scale problem by 

using multiple wells distributed across the basin in each pumping event. We feel this is a 

realistic way to address the scale problem in a manner that can potentially be applied to 

monitored municipal or treatment wellfields.

The tomographic approach to analyzing aquifer  test  data could potentially be used on 

existing monitoring data.  In  many basins  there  are  collections  of  operational  data  and 

numerous aquifer tests which have been conducted through time, which may not provide a 
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great deal of useful basin-wide information individually, but when analyzed together, they 

can create a whole which is greater than the sum of the parts.  Results of this study appear 

to echo the call by Yeh and Lee [2007]: It is time to change the way we collect and analyze 

data for aquifer characterization.

Acknowledgments

This  is  an  extension  of  a  term  project  for  the  advanced  subsurface  hydrology  class 

(HWR535) offered at Department of Hydrology and Water Resources at the University of 

Arizona  by  the  last  author;  it  was  partially  funded  by  a  SERDP  grant  (ER-1365) 

subcontracted through University of Iowa, and NSF IIS-0431079.  We would like to thank 

Michael Fienen and one anonymous reviewer for their detailed and insightful comments.

22 Kuhlman, Hinnell, Mishra & Yeh

481

482

483

484

485

486

487

488

489

490

491

33

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



References

Barlebo, H. C., M. C. Hill,  and D. Rosbjerg (2004), Investigating the Macrodispersion 

Experiment  (MADE)  site  in  Columbus,  Mississippi,  using  a  three-dimensional 

inverse flow and transport model, Water Resources Research, 40(4), W04211.

Bohling, G. C., X. Zhan, J. J. Butler Jr., and L. Zheng (2002), Steady shape analysis of 

tomographic pumping tests for characterization of aquifer heterogeneities,  Water 

Resources Research, 38(12), 1324.

Bohling, G. C., J. J. Butler Jr., X. Zhan, and M. D. Knoll (2007), A field assessment of the 

value  of  steady  shape  hydraulic  tomography  for  characterization  of  aquifer 

heterogeneities, Water Resources Research, 43(5), W05430.

Brauchler, R., R. Liedl, and P. Dietrich (2003), A travel time based hydraulic tomographic 

approach, Water Resources Research, 39(12), 1370.

Bredehoeft, J. D. (2003), From models to performance assessment: the conceptualization 

problem, Ground Water, 41(5), 571–577.

Chen, Y., and D. Zhang (2006), Data assimilation for transient flow in geologic formations 

via ensemble Kalman filter, Advances in Water Resources., 29, 1107–1122.

Doherty, J. (2007), PEST: Model-independent Parameter Estimation User Manual, edition 

5, Watermark Numerical Computing.

Goegbeur,  M.,  and  V.  R.  N.  Pauwels  (2007),  Improvement  of  the  PEST  parameter 

estimation  algorithm through extended Kalman filtering,  Journal  of  Hydrology, 

337, 436–451.

Gottlieb, J., and P. Dietrich (1995), Identification of the permeability distribution in soil by 

hydraulic tomography, Inverse Problems, 11, 353–360.

Kuhlman, Hinnell, Mishra & Yeh 23

34

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

35

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



Hao,  Y.,  T.-C.  J.  Yeh,  J.  Xiang,  W. A.  Illman,  K.  Ando,  K.-C.  Hsu (2008),  Hydraulic 

tomography for detecting fracture connectivity, Ground Water, in press.

Harbaugh, A. W. (2005), The US Geological Survey modular ground-water model,  the 

ground-water flow process, in USGS Techniques and Methods 6-A16.

Hughson, D.L., and T.-C.J. Yeh (2000), An inverse model for three-dimensional flow in 

variably saturated porous media,  Water Resources Research, 36(4), 829–839.

Illman,  W.  A.,  X.  Liu,  and  A.  Craig  (2007),  Steady-state  hydraulic  tomography  in  a 

laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale 

validation of hydraulic conductivity tomograms,  Journal of Hydrology, 341(3-4), 

222–244.

Isaaks,  E.  H.,  and R.  M. Srivastava (1989),  An Introduction to Applied Geostsatistics, 

Oxford.

Konikow, L. F., and J. D. Bredehoeft (1992), Groundwater models cannot be validated, 

Advances in Water Resources, 15(1), 75–83.

Li,  W.,  A.  Englert,  O.  A.  Cirpka,  J.  Vanderborght,  and  H.  Vereecken  (2007),  Two-

dimensional characterization of hydraulic heterogeneity by multiple pumping tests, 

Water Resources Research, 43(4), W04433.

Liu,  S.,  T.-C.  J.  Yeh,  and R.  Gardiner  (2002),  Effectiveness  of  hydraulic  tomography: 

sandbox experiments, Water Resources Research, 38(4)WR000338.

Liu, X., W. A. Illman, A. J. Craig, J. Zhu, and T.-C. J. Yeh (2007), Laboratory sandbox 

validation of  transient  hydraulic  tomography,  Water  Resources  Research,  43(5), 

W05404.Oreskes,  N.,  K.  Shrader-Frechette,  and  K.  Belitz  (1994),  Verification, 

24 Kuhlman, Hinnell, Mishra & Yeh

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

36

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



validation and confirmation of numerical  models in the earth sciences,  Science, 

243(5147), 641--646.

Poeter, E. P., M. C. Hill, E. R. Banta, S. Mehl, and S. Christensen (2005), UCODE_2005 

and six other computer codes for universal  sensitivity analysis,  calibration,  and 

uncertainty evaluation, in USGS Techniques and Methods 6-A11.

RamaRao, B. S., A. M. LaVenue, G. de Marsily, and M. G. Marietta (1995), Pilot point 

methodology for automated calibration of an ensemble of conditionally simulated 

transmissivity fields, 1, Theory and computational experiments,  Water Resources 

Research, 31(3), 475–493.

Straface, S., T.-C. J. Yeh, J. Zhu, S. Troisi, and C. H. Lee (2007), Sequential aquifer tests at 

a well field, Montalto Uffugo Scalo, Italy, Water Resources Research, 43, W07432.

Sun,  N.-Z.,  and  W.  W.-G.  Yeh  (1992),  A  stochastic  inverse  solution  for  transient 

groundwater  flow:  Parameter  identification  and  reliability  analysis,  Water 

Resources Research, 28(12), 3269–3280.

Sykes, J. F., J. L. Wilson, and R. W. Andrews (1985), Sensitivity analysis for steady state 

groundwater flow using adjoint operators,  Water Resources Research, 21(3), 359–

371.

Tikhonov, A. N., and V. Y. Arsenin (1977), Solutions of Ill-Posed Problems, Wiley.

Tosaka, H., K. Masumoto, and K. Kojima, (1993), Hydropulse tomography for identifying 

3-D  permeability  distribution,  in  Proceedings  of  the  4th Annual  International  

Conference on High Level Radioactive Waste Management.

Vasco, DW, H, Keers, and K. Karasaki (2000), Estimation of reservoir properties using 

transient  pressure data:  An asymptotic approach,  Water Resources Research,  36 

Kuhlman, Hinnell, Mishra & Yeh 25

37

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

38

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



(12): 3447–3465.

Vesselinov, V. V., S. P. Neuman, and W. A. Illman (2001), Three-dimensional numerical 

inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. Equivalent 

parameters, high-resolution stochastic imaging and scale effects.  Water Resources 

Research, 37(12), 3019–3042.

Wu, C. -M., T.-C. J. Yeh, J. Zhu, T. H. Lee, N.-S. Hsu, C.-H. Chen, and A. Folch-Sancho 

(2005), Traditional analysis of aquifer tests: Comparing apples to oranges?, Water 

Resources Research, 41(9), W09402.

Xiang, J., T.-C. J. Yeh, C.-H. Lee, K.-C. Hsu, and J.-C. Wen (2008), A new estimator and a 

guide  for  hydraulic  tomography  analysis,  Ground  Water (in  press).Yeh,  T.-C.J. 

(1992),  Stochastic modeling of groundwater flow and solute transport in aquifers, 

Journal of Hydrologic Processes, 6, 369–395.

Yeh, T.-C. J., R. Srivastava,  A. Guzman, T. Harter (1993), A numerical-model for water-

flow and chemical-transport in variably saturated porous-media. Ground Water.  31 

(4): 634–644.

Yeh,  T.-C.  J.,  M.  Jin,  and  S.  Hanna  (1996),  An  iterative  stochastic  inverse  method: 

conditional  effective  transmissivity  and hydraulic  head  fields,  Water  Resources 

Research, 32(1), 85–92.

Yeh, T.-C. J., and C. H. Lee (2007), Time to change the way we collect and analyze data for 

aquifer characterization, Ground Water 45 (2): 116–118.

Yeh, T.-C. J., C. H. Lee, K.-C. Hsu, and Y.-C. Tan (2007), “Fusion of Active and Passive 

Hydrologic  and  Geophysical  Tomographic  Surveys:  The  Future  of  Subsurface 

26 Kuhlman, Hinnell, Mishra & Yeh

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

39

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



Characterization” in  Data Integration in Subsurface Hydrology, Edited by D. W. 

Hyndman, F. D. Day-Lewis, and K. Singha, AGU monograph.

Yeh, T.-C. J., and S. Liu (2000), Hydraulic tomography: Development of a new aquifer test 

method, Water Resources Research, 36(8), 2095–2105.

Yeh,  T.-C.  J.,  and P.  A.  Mock (1996),  Structured approach for  calibrating steady-state 

ground-water flow models, Ground Water, 34(3), 444–450.

Zhang, J., and T.-C. J. Yeh (1997), An iterative geostatistical inverse method for steady 

flow in the vadose zone, Water Resources Research, 33(1), 63–71.

Zhu, J. and T.-C. J. Yeh (2005), Characterization of aquifer heterogeneity using transient 

hydraulic tomography, Water Resources Research, 41(7), W07028.

Zhu, J. and T.-C. J. Yeh (2006), Analysis of hydraulic tomography using temporal moments 

of drawdown recovery data, Water Resources Research, 42(2), W02403.

Kuhlman, Hinnell, Mishra & Yeh 27

40

582

583

584

585

586

587

588

589

590

591

592

593

41

author draft copy; see http://dx.doi.org/10.1111/j.1745-6584.2008.00455.x for final version



TABLE
σ²ln(T) = 2.0

1a Event 1 Events 1–2 Events 1–3 Events 1–4
Noisy 

observations
Drawdown + 
Incorrect BC

σ²ln(T) =1.0 σ²ln(T) = 3.0

ρ 0.53 0.77 0.87 0.73 0.69 0.82 0.86 0.011

ρrank 0.77 0.86 0.89 0.85 0.82 0.84 0.93 0.033

L1 0.85 0.56 0.46 0.58 0.72 0.60 0.27 1.39

L2 1.25 0.58 0.42 0.64 0.89 0.87 0.13 2.90

σ²ln(S) = 2.0

1b Event 1 Events 1–2 Events 1–3 Events 1–4
Noisy 

observations
Drawdown + 
Incorrect BC

σ²ln(S) = 1.0 σ²ln(S) = 3.0

ρ 0.37 0.77 0.81 0.80 0.65 0.33 0.87 0.083

ρrank 0.67 0.73 0.74 0.77 0.76 0.71 0.87 0.031

L1 1.14 0.75 0.67 0.70 0.75 0.95 0.33 1.38

L2 2.20 1.13 1.01 0.96 1.05 1.46 0.22 3.07

Table 1Comparison of summary  T (1a) and  S (1b) statistics for different SSLE inverse 

solutions,  ρ and  ρrank are the correlation and rank correlation coefficients, L1 and L2 are 

norms indicating bias and error in standard deviation respectively.
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FIGURES

Fig 1 Map of domain showing pumping (open) and observation (solid)  locations; 

∆=event 1, □=event 2, star=event 3, ○=event 4.  Dashed boundary is specified head, 

dotted boundary is specified non-zero flux, and solid boundary is no-flow.
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Fig 2: Map of true randomly-generated T field with σ²ln(T)=2.0 and mean=300m²/day, 

and S field with σ²ln(S)=2 and mean=0.0001. 
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Fig 3a Maps of estimated T using Theis analysis
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Fig 3b Maps of estimated S using Theis analysis
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Fig 4 Maps of estimated T and S using SSLE method (all 4 pumping events)
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Fig 5 Scatterplots of estimated T and S using SSLE 
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Fig 6 Scatterplots of x and y velocity components for SSLE-estimated T and S
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Fig 7 Scatterplots of SSLE inversion using different pumping events (top row is  T, 

bottom row is S); A,B = event 1 only; C,D =  events 1–2; E,F = events 1–3; see Figure 5 

for events 1–4.
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Fig 8a Scatterplots of SSLE-estimated T and S with noisy (σ=0.1m) head observations
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Fig 8b Scatterplots of x and y velocity components for SSLE-estimated T and S using 

noisy observations
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Fig 9a Scatterplots  of  SSLE-estimated  T and  S using  drawdown  and  incorrect 

boundary conditions
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Fig 9b Scatterplots of  x and  y components of velocity for SSLE-estimated  T and  S 

using drawdown and incorrect boundary conditions
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