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When contouring scalar potentials from point observations the process can often benefit from including
the known effects of boundary curves with specified potential or gradient. Here we consider the hydraulic
head in an aquifer and both no-flow and constant-head boundary conditions. We present a new approach
to enforcing that equipotential contours be normal to no-flow boundaries. A constant-head boundary,
with unknown head, can be included through the same process by rotating the boundary vector by
90�. Collocated observations of heads and boundaries can specify a constant-head boundary of known
value. We estimate head given both head and boundary condition observations, cokriging with both
types of information. Our new approach uses gradient vectors in contrast with previous approximate
finite-difference methods that include boundary conditions in kriging. Either the approach given here
or the finite-difference method must be implemented with smooth covariance models, e.g., Gaussian,
generalized Cauchy, and Matérn.

� 2010 Elsevier B.V. All rights reserved.
Introduction

Kriging can be used to estimate hydraulic head between obser-
vation wells (e.g., on a grid) for the construction of 2D equipoten-
tial contour maps (Kitanidis, 1997). Although kriging is the best
linear unbiased estimator, it does not include geologic or physical
knowledge of the system (beyond structure embodied in the vari-
ogram), that a practitioner would likely use when contouring the
same potentials by hand. We illustrate a method to include bound-
ary condition information in the kriging of 2D potentials. These
boundary conditions may include no-flow conditions along faults
or hydrologic contacts, or constant head conditions.

Cokriging is the multi-variable extension to kriging, and was
developed in mining to address the common problem of estimating
an under-sampled variable (e.g., Chilés and Delfiner, 1999, Chapter
5). Often an allied variable is estimated more frequently than the
variable of interest, and the correlation between the two is used
to improve the quality of the final estimate (e.g., Chilés and Delfin-
er, 1999; Goovaerts, 1997; Isaaks and Srivastava, 1989; Kitanidis,
1997). Frequently the information contained in a second variable
can be used to enhance estimates of the primary variable. The esti-
mation of cross-covariance functions, which describe the spatial
ll rights reserved.

: +1 575 234 0061.
n).
correlation between variables at different locations, is a hindrance
to more widespread use of cokriging (Isaaks and Srivastava, 1989).
Unless the dataset is exhaustive, cross-covariance models esti-
mated solely from data are questionable.

Our approach derives the required cross-covariance functions
from the mathematical relationship followed by a potential and
its gradient. The benefits are twofold; first, only the direct covari-
ance (or equivalent variogram) function need be estimated (as is
done for single-variable kriging) and secondly, the cokriging now
honors a portion of the underlying physical process (i.e., the spatial
relationship between the potential and its gradient), which single-
variable kriging cannot.

Pardo Igúzquiza and Chica Olmo (2004) and Brochu and Mar-
cotte (2003) discuss covariance models which can be used to rep-
resent a function known to be second-order continuous, i.e., a
potential governed by a second-order differential equation. The
covariance model must be continuous at the origin (zero lag); most
common covariance models do not satisfy this requirement (e.g.,
exponential and spherical), we will discuss three that do.

Chilés and Delfiner (1999, p. 319) introduced a finite-difference
approximation to no-flow boundary condition information when
kriging hydraulic heads, referring to an unpublished presentation
by Delhomme from 1979. More recently Brochu and Marcotte
(2003) give a finite-difference example in terms of a dual kriging
formulation. We develop the cokriging equations using the true
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Fig. 1. No-flow (a) and constant head (b) boundary conditions, represented with
boundary vectors (tail at point of application). Arrows offset from boundary for
clarity.
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gradients of head and the cross-covariance models required from
the covariance function used for heads. We compare and contrast
this with the finite-difference approach.

True derivative approach

Cokriging is used to include boundary condition information
when kriging potentials. Pardo Igúzquiza and Chica Olmo (2004,
2007) extended the related procedure of estimating the gradients
using head data alone (Philip and Kitanidis, 1989), deriving the
covariance and cross-covariance functions analytically from the
Gaussian covariance which models the variability of head. The cok-
riging linear estimator, Z�, is

Z� x0ð Þ ¼
XN

a¼1

kaZðxaÞ þ
XM

b¼1

db½v̂ðxbÞ � rZðxbÞ�; ð1Þ

where ZðxaÞ is the potential observed at xa (x a 2D Cartesian coor-
dinate), x0 is the location where the potential is to be estimated, ka

and db are cokriging weights, a and b are dummy variables, N and M
are the number of head and boundary observations respectively,
and v̂ðxbÞ is a unit vector normal to the no-flow boundary (or tan-
gent to a constant-head boundary), see Fig. 1. Using the shorthand
notation ZðxaÞ ¼ Za, we denote the directional derivative of Za, in
the direction v̂ , as ðv̂ � rZÞa ¼ Zv̂

a .

Kriging with a trend

The universal kriging drift is assumed to be polynomial in form,
specified as

E½Z0� ¼ mðx0Þ ¼
XL

‘¼0

c‘f
‘
0 ; ð2Þ

where E is the expectation operator, mðx0Þ is the mean (a smooth
function), c‘ are free coefficients, L is the order of the polynomial
approximation, and the monomial basis functions are
f 0 ¼ 1; f 1 ¼ x; f 2 ¼ y; f 3 ¼ x2; f 4 ¼ y2; f 5 ¼ xy, etc. For L ¼ 0, the
universal kriging system simplifies to that of ordinary kriging (con-
stant unknown mean). L ¼ 2 corresponds to a linear trend, while
L ¼ 5 corresponds to a quadratic trend. Brochu and Marcotte
(2003) indicate how other types of drift basis functions (e.g., the
Thiem steady-state well solution) can be used in the contouring
of hydraulic heads in special circumstances where additional infor-
mation is known about the flow system.

Unbiasedness condition

The kriging weights ka and da are sought to minimize the vari-
ance, while producing an unbiased solution. The unbiasedness con-
dition is

E Z�0 � Z0
� �

¼ 0 ð3Þ

where Z0 is the unknown true value at the desired estimation loca-
tion. This can be expanded using (1) and (2) as

E½Z0� ¼
X

a
kaE½Za� þ

X
b

dbE Zv̂
b

h i
X
‘

c‘f
‘
0 ¼

X
‘

c‘
X

a
kaf ‘a þ

X
‘

c‘
X

b

dbðv̂ � rf ‘Þb

f ‘0 ¼
X

a
kaf ‘a þ

X
b

dbðf ‘Þv̂b ‘ ¼ 0; . . . ; L

ð4Þ

where the v̂ component of the gradient of the ‘th monomial drift
term, ðf ‘Þv̂b , at location xb, can be computed explicitly. These gradi-
ents are rf ‘b ¼ 0; ı̂; |̂; 2x̂ı; 2y|̂; ŷıþ x|̂, for ‘ ¼ 0; . . . ;5, where ı̂
and |̂ are the Cartesian unit vectors. These gradient vectors are pro-
jected onto v̂ . To ensure the expected value of the prediction is
equal to the mean, mðxÞ, we enforce (4) while minimizing the esti-
mation variance.

Estimation variance

The variance of the estimation error R due to the linear estima-
tor is

Var½R� ¼ Ef Z�0 � Z0
� �2g ð5Þ

Following a procedure akin to that used to derive the standard
kriging and cokriging equations (e.g., Goovaerts, 1997; Isaaks and
Srivastava, 1989; Kitanidis, 1997), we substitute (1) and expand
(5) as

Var½R� ¼ kakbE½ZaZb� þ dadbE Zv̂
aZv̂

b

h i
þ E½Z0Z0� þ 2kadbE ZaZv̂

b

h i
� 2kaE½ZaZ0� � 2daE Z0Zv̂

a

h i
ð6Þ

For brevity, Einstein summation convention is used; pairs of
dummy subscripts within a product imply summation. The ex-
pected value of the product of random variables is their covariance,
CðhÞ; here it is assumed the covariance is isotropic and only a func-
tion of the distance or lag h between the two points. For example,
E½ZaZb� ¼ CðhabÞ ¼ rab, where rab is element ða; bÞ from the covari-
ance matrix.

Parzen (1962, Section 3.3) illustrates how the expected value of
the derivative of a stochastic process is the derivative of the ex-
pected value; the order of the E and r operators can be switched,
by assuming mðxÞ is differentiable and the second derivative of the
covariance exists. Doing so yields

Var½R� ¼ kakbrab þ dadbrv̂û
ab þ r2

00 þ 2kadbrv̂
ab � 2kara0

� 2darû
0a ð7Þ

where rv̂
ab and rv̂û

ab are the first and second directional derivatives of
the covariance, respectively.

An objective function, Q, which incorporates both the minimiza-
tion of the variance (7) and the unbiasedness condition (4), can be
defined as (Chilés and Delfiner, 1999, p. 167)

Q ¼ Var½R� þ 2l‘ kaf ‘a þ dbðf ‘Þv̂b � f ‘0
h i

ð8Þ

where l‘ : ‘ ¼ 0; . . . ; L are Lagrange multipliers.

Minimize variance of residual

To minimize Q, we take derivatives of (8) with respect to each
weight and Lagrange multiplier (e.g., Chilés and Delfiner, 1999,
Section 3.3.1)
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Fig. 2. Gaussian covariance model and its first two derivatives, r2 ¼ 1; a ¼ 1.
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@Q
@ka
¼ 2 kbrba þ dbrv̂

ba � ra0 þ l‘f
‘
a

h i
a ¼ 1; . . . ;N ð9Þ

@Q
@db
¼ 2 darv̂ û

ab � rû
b0 þ karû

ab þ l‘ðf ‘Þ
û
b

h i
b ¼ 1; . . . ;M ð10Þ

@Q
@l‘

¼ 2 kaf ‘a þ dbðf ‘Þûb � f ‘0
h i

‘ ¼ 0; . . . ; L ð11Þ

The system of equations for ka; db, and l‘ is obtained by setting
(9)–(11) to zero. In matrix notation (e.g., Myers, 1982) the system
of universal cokriging equations are
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Fig. 3. Generalized Cauchy model with different exponents plotted on linear (a) and
semilog (b) scale; r2 ¼ 1, a ¼ 1. Ninty-five percent line indicates effective range.
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where T is matrix transpose, and 0 indicates terms evaluated at the
estimation location, x0. The submatrices in (12) are

A ¼ rab a ¼ 1; . . . ;N; b ¼ 1; . . . ;N

B ¼ rv̂
ab a ¼ 1; . . . ;M; b ¼ 1; . . . ;N

D ¼ rv̂û
ab a ¼ 1; . . . ;M; b ¼ 1; . . . ;M

F ¼ f ‘a a ¼ 1; . . . ;N; ‘ ¼ 0; . . . ; L

G ¼ ðf ‘Þv̂a a ¼ 1; . . . ;M; ‘ ¼ 0; . . . ; L

ð13Þ

and the vectors appearing on the right-hand side of (12) are

r0 ¼ ra0 a ¼ 1; . . . ;N

D0 ¼ rv̂
a0 a ¼ 1; . . . ;M

f 0 ¼ f ‘0 ‘ ¼ 0; . . . ; L

ð14Þ

Next, we explore three valid covariance models that can be used
in this cokriging approach.

Covariance models

The kriging equations are presented here in terms of covari-
ance; they can be related to the equivalent variogram-form equa-
tions using the relationship

cðhÞ ¼ r2 � CðhÞ ð15Þ
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Fig. 7. Relative difference between true derivative and approximate finite differ-
ence covariance functions over a range of q. First derivatives are solid lines, second
derivatives are dotted; a = 6.
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when it applies. Here, Cð0Þ ¼ r2 is the variance when it exists (e.g.,
Isaaks and Srivastava, 1989, p. 171).

The limitations and requirements on a covariance model used
to represent a differentiable function are discussed in detail in
the literature (e.g., Philip and Kitanidis, 1989; Brochu and Mar-
cotte, 2003; Pardo Igúzquiza and Chica Olmo, 2004, 2007); the
covariance model must be twice differentiable at the origin. The
commonly-used exponential, power and spherical variogram mod-
els do not satisfy this differentiability requirement.

As stated in the derivation of the estimation variance, the ex-
pected value of the gradient of a stochastic process (e.g., hydrau-
lic heads) is equivalent to the gradient of the expected value of
the same process. This allows gradient-based boundary condition
information to be included through the derivative of the covari-
ance function used for the potentials themselves. This obviates
the need to estimate additional cross-covariance functions
needed for cokriging, as they are found through functional rela-
tionships with the covariance modeled after the observed
potentials.

Gaussian

The Gaussian covariance model is well known (e.g., Isaaks and
Srivastava, 1989; Kitanidis, 1997); its directional derivatives are
given in Pardo Igúzquiza and Chica Olmo (2004, Eqs. (33)–(35)),
and are plotted in Fig. 2. For contouring hydraulic heads, this
model is often too smooth, being infinitely differentiable at
h ¼ 0 (e.g., Schabenberger and Gotway, 2005, p. 144). The over-
smoothness of the otherwise useful Gaussian model is usually
treated operationally by adding a small artificial nugget (Goova-
erts, 1997, p. 102).



18 K.L. Kuhlman, E. Pardo Igúzquiza / Journal of Hydrology 384 (2010) 14–25
Generalized Cauchy

The generalized Cauchy covariance model is used for analyzing
gravity or magnetic geophysical data (e.g., Brochu and Marcotte,
2003; Chilés and Delfiner, 1999, p. 85); both fields are governed
by second-order differential equations. The generalized Cauchy
model is

rðhÞ ¼ r2 1þ h2

a2

 !�p

ð16Þ

where a is the range, p is the exponent, h2 ¼ h � h is the squared lag,
and h is the separation vector between two locations.

Chilés and Delfiner (1999) physically justified the choices of
p ¼ 1=2 for gravity fields and p ¼ 3=2 for magnetic fields using sta-
tistical models derived from random sources buried at an average
depth of a=2. The case p ¼ 1 corresponds to the standard Cauchy
model (see Fig. 3). The generalized Cauchy model is infinitely dif-
ferentiable at the origin, but has an additional degree of freedom
compared to the Gaussian model.
0

(a)

(c)

Fig. 8. Kriged head for synthetic example with head observations (red stars) and bounda
constant head along top and bottom, (d) no-flow top and bottom and constant head along
reader is referred to the web version of this article.)
The first directional derivative of (16) in the direction v̂ is

rv̂ðhÞ ¼ �2pr2hv̂

a2 1þ h2

a2

 !�p�1

ð17Þ

where hv̂ ¼ h � v̂ is the scalar projection of the separation vector
onto the boundary unit vector. The second directional derivative
in the direction û is

rûv̂ðhÞ ¼ 2pr2

a2

2ðpþ 1Þhûhv̂

a2 1þ h2

a2

 !�p�2

� 1þ h2

a2

 !�p�1
2
4

3
5
ð18Þ

See Fig. 4 for plots of (17) and (18) for various exponents.

Matérn

The Matérn or K-Bessel covariance model is a viable model for
geostatistical analysis of physically-based smooth fields (e.g.,
(b)

(d)

ry conditions (blue arrows). (a) No boundaries, (b) no-flow along top and bottom, (c)
left and right. (For interpretation of the references to colour in this figure legend, the
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Chilés and Delfiner, 1999, p. 86; Pardo Igúzquiza and Chica Olmo,
2008; Pardo Igúzquiza et al., 2009; Bras and Rodríguez Iturbe,
1993, p. 287). A benefit of using the Matérn model is the adjustable
smoothness parameter; for second-order smooth fields m P 2. For
example, m could be increased or decreased to reflect the knowl-
edge of relative aquifer homogeneity. The Matérn model is plotted
in Fig. 5 and is defined as
rðhÞ ¼ r221�m

CðmÞ
h
a

� �m

Km
h
a

� �
ð19Þ
where m is the shape or smoothness parameter and CðxÞ and KmðxÞ
are the gamma and m-order second-kind modified Bessel functions
(see Abramowitz and Stegun (1964) and Andrews (1998) for prop-
erties and characteristic plots). For m ¼ 1

2 (19), reduces to the famil-
iar exponential model, a straight line in Fig. 5b. As m ! 1 the
Matérn model converges towards the Gaussian model (it becomes
(a)

Fig. 9. Kriged head (a) and estimation error (b) for case without colloca

(a)

Fig. 10. Kriged head (a) and estimation error (b) for case with collocated head and flux
interpretation of the references to colour in this figure legend, the reader is referred to
infinitely differentiable at h ¼ 0) (Schabenberger and Gotway,
2005, p. 143).

The first directional derivative of (19) in the direction v̂ is

rv̂ðhÞ ¼ �ĥv̂ r221�m

aCðmÞ
h
a

� �m

Km�1
h
a

� �
ð20Þ

where ĥv̂ ¼ v̂ � h=h is the scalar product of two unit vectors. The
derivative of xmKmðxÞ is evaluated in terms of a recurrence relation-
ship involving different orders of the same function (McLachlan,
1955, p. 204, Eq. (216)).

The second directional derivative of the Matérn covariance
function in the direction û is

rv̂ûðhÞ ¼ ĥv̂ ĥû r221�m

a2CðmÞ
h
a

� �m a
h

Km�1
h
a

� �
� Km�2

h
a

� �� �
ð21Þ

See Fig. 6 for plots of (20) and (21) for various values of smooth-
ness parameter.
(b)

ted head and boundary observations (same conditions as Fig. 8d).

(b)

observation at (10,9.5) – note red star and tail of blue arrow at same location. (For
the web version of this article.)
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Comparison of covariance models

Of the three sufficiently smooth covariance models discussed
here, the Gaussian model is the most widely known and imple-
mented, but both the generalized Cauchy and Matérn models have
an additional degree of freedom in their formulation. The Matérn
smoothness parameter potentially has more physical relevance
than the generalized Cauchy exponent, although the Cauchy expo-
nent has been related to the type of governing equation (Chilés and
Delfiner, 1999).

Of these three models, the Matérn model (for m P 2) is least
smooth, being at least twice differentiable, smoothness increasing
with m. Both the Gaussian and generalized Cauchy are infinitely
smooth, which is at variance with what we observe in nature for
these fields (Schabenberger and Gotway, 2005, p. 144). The Matérn
(a)

Fig. 12. Log-transmissivity (a) and modeled steady-state heads (b) for 22 � 22 flow mo
head, set to 20 and 0 respectively. Sampling locations indicated with stars in (b).

(a)

Fig. 11. Kriged head (a) and estimation error (b) for case with collocated head and flux
locations. (For interpretation of the references to colour in this figure legend, the reader
model has a larger effective range than either the Gaussian or gen-
eralized Cauchy models (see Figs. 3b and 5b).
Finite difference approach

A simplified form of cokriging, specific to the current problem,
is outlined. Rather than rigorously treating the gradient informa-
tion as a secondary variable (as done in cokriging), the gradient
is approximated by using a centered finite difference in place of
the true derivative. Two points are placed straddling the boundary,
in approximation of the boundary vectors. The approach has been
discussed in Chilés and Delfiner (1999) and an example is shown
in Brochu and Marcotte (2003) in terms of the dual kriging
approach.
(b)

del domain. Top and bottom rows are no-flow; left and right columns are constant

(b)

observations at (10,9.5) and (0,0.5) – note red stars and tail of blue arrows at same
is referred to the web version of this article.)



K.L. Kuhlman, E. Pardo Igúzquiza / Journal of Hydrology 384 (2010) 14–25 21
Following Chilés and Delfiner (1999, Section 5.5.4), the linear
estimator for the head, Z��, is

Z��0 ¼ kaZa þ
db

2q
½Zðxþ qv̂Þb � Zðx� qv̂Þb� ð22Þ

where q is a small displacement used in the centered finite differ-
ence approximation to the true derivative. Chilés and Delfiner
(1999) give (22) without the 1=2q term, as this constant does not
affect the ordinary kriging estimation process. Retaining this term
leads to numerically comparable kriging matrices for both ap-
proaches given here, allowing derivatives to be checked against
their finite-difference equivalents.

The variance R due to (22), analogous to (6), is

Var½R� ¼ kakbE½ZaZb� þ dadbE ðZaþ � Za� ÞðZbþ � Zb� Þ
� �

þ E½Z0Z0� þ kadbE½ZaðZbþ � Zb� Þ� � 2kaE½ZaZ0�
� 2daE½Z0ðZaþ � Za� Þ� ð23Þ
(a)

Fig. 13. Kriged head contours without boundary conditions (a), with boundary condition
collocated head data.
where the shorthand Zb� ¼ Zðxb � qv̂Þ is used. Expanding the prod-
ucts in (23), and expressing the results in terms of covariance matri-
ces, leads to

Var½R� ¼ kakbrab þ dadb raþbþ � ra�bþ � raþb� þ ra�b�
� �

þ r2

þ 2kadb rabþ � rab�
� �

� 2kara0 � 2da½raþ0 � ra�0� ð24Þ

In this finite-difference approach, only the difference of covari-
ance functions appear; there are no covariance derivatives repre-
senting cross-covariance between head and its gradient.

Fig. 7 is a numerical comparison between the true gradient and
finite-difference approximation forms, keeping the 1=2q term in
(22). The uniform slope for all the curves is related to the accuracy
of the finite-difference approximation, here OðhÞ; the error for the
first-order derivatives (solid lines) is less than that for the corre-
sponding second-order ones (dotted lines). Clearly, the error asso-
ciated with the finite-difference approximation is insignificant
(b)

(c)

s and no collocated head observations, and (c) with both boundary conditions and
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compared to the uncertainty in the entire estimation process (for
reasonably small q).

An analogous unbiasedness condition to (4) is derived for (24),
namely

f ‘0 ¼ kaf ‘a þ db f ‘bþ � f ‘b�
� 	

‘ ¼ 0; . . . ; L ð25Þ

which does not involve derivatives of the drift functions, only func-
tion evaluations. This could be beneficial if using drift functions
more complex than monomials (e.g., Brochu and Marcotte, 2003).

Examples

Non-collocated data

We give a simple synthetic example that illustrates the effects
boundary conditions can have on sparse data; it is comprised of a
(a)

(c)

Fig. 14. Scatter plot of observed (model-generated) and kriged heads for
10 � 10 domain with 20 head observations picked with a Latin
hypercube sampling strategy in the region 1 6 x 6 9; 1 6 y 6 9
(see Fig. 8). Heads at sample locations are h ¼ xþ yþ Nð0;1Þ, where
Nð0;1Þ is an unbiased unit variance random normal deviate. A lin-
ear trend ðL ¼ 2Þ, and a Gaussian covariance model with
a ¼ 6:0; r2 ¼ 13:0, and nugget = 0.1 was used to krige the data onto
a regular 1� 1 grid for contouring. A small nugget value can repre-
sent measurement error, and is often operationally included even
when there is no measurement error to counteract the overly
smooth nature of the Gaussian model (Goovaerts, 1997, p. 102).

Adding five no-flow (8b) or constant head (8c) observation
points to represent hypothetical upper and lower boundaries
clearly changes the nature of the prediction at the edges of the po-
tential data. Imposing a no-flow condition on the top and bottom,
along with an unknown constant head along the left and right (8d)
gives yet another possible interpretation of the same potential data
with non-collated head and boundary data.
(b)

all 400 model element centers, for the same cases given in Fig. 13.
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Fig. 15. L1 and L2 error norms and correlation coefficient between kriged and model-generated heads at all 400 element centers as a function of sample size, for the same
three cases given in Figs. 13 and 14.

Fig. 16. Observed heads (circle size indicates relative value of head) for the Vega de
Granada aquifer; no-flow boundaries of aquifer are indicated with boundary normal
arrows.
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Collocated data

Here we consider the effects of collocated data i.e., both head
and boundary condition observations at the same location, using
the simple synthetic problem introduced above. Fig. 9 shows the
effect this has on both the value (a) predicted near the boundary
and the associated cokriging estimation error (b), given by R. The
observed heads are the same used in Fig. 8d.

Including one additional head observation at x ¼ 10; y ¼ 9:5
along the right specified-head boundary (upper right of Fig. 10a
and b) both decreases the estimation error along the entire bound-
ary (compare Figs. 9b and 10b) and increases the head along the
right constant-head boundary from approximately 13 to about
19 (comparing Figs. 9a and 10a). Additionally specifying the head
along the lower left boundary has a similar effect, and the con-
stant-head boundary is lowered from about 7 (Fig. 9a) or 5
(Fig. 10a) to less than 2 (Fig. 11a). In this simple example it is clear
that kriging tends to produce results at the boundaries averaged
from the whole domain; often physical boundary conditions are
extreme values, driving system behavior. Collocated boundary data
are required to force kriging-predicted constant-head boundary
values that are greater or less than head observations interior to
the domain.

Flow model comparison

In this example, a 22 � 22 confined flow model with log trans-
missivity plotted in Fig. 12a is used to generate steady-state heads
(Fig. 12b); modeled heads are compared with the results of kriging
using the no-flow (top and bottom) and constant head (head = 0
left and head = 20 right) boundary conditions, with and without
collocated data.

Twenty heads are sampled from the 20 � 20 active portion of
the model domain using a Latin hypercube approach, Fig. 13 shows
contours of kriged heads illustrating the benefits the boundary
condition data have on the kriging at the edges of the domain
(especially along the top and bottom). Additionally including head
observations on the constant-head boundaries improves the kriged
predictions there. The MLMATERN maximum likelihood variogram
estimator (Pardo Igúzquiza et al., 2009) was used to estimate
Matérn variogram parameters from the 20 sampled heads;
r2 ¼ 13:934; a ¼ 2:9141, nugget = 0, and m ¼ 2:5450.

Scatter plots in Fig. 14 shows that all three cases illustrated in
Fig. 13 do a good job estimating heads in the flat gradient on the
right of the domain. On the left side of the domain, where the gra-
dient is steeper, both non-collocated methods predict results scat-
tered about the modeled values, with more bias in the case without
boundary conditions; collocated head and boundary observations
improve fits near both boundaries. Including the left constant-head
boundary condition improves the estimation in areas where there
are no observed heads, including the lower left corner. The con-
stant head condition gives the contours the correct shape, but
there is still a bias at the boundary; there are not enough observa-
tions in the area where steep gradients exist.

To explore effects due to sample size, the approach given in
Figs. 13 and 14 is repeated for random subsamples of 3–20 obser-
vations from the original 20 samples shown in 12b (same vario-
gram parameters used for all sample sizes). The absolute error



(a)

(b)

(c)

Fig. 17. Kriged head in meters without (a) and with (b) boundary condition
information for the Vega de Granada aquifer; boundary vectors indicated with blue
arrows; difference (without BC – with BC) given in (c) with 1 m steps in shading.
(For interpretation of the references to colours in this figure legend, the reader is
referred to the web version of this paper.)
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norm (L1), mean-square error norm (L2) (e.g., Yeh and Liu, 2000,
Eq. (14)), and correlation coefficient are used to quantify goodness
of fit between the full populations of 400 kriged and modeled head
values for each observation sample size used in the kriging
(Fig. 15). Lower norm values and higher correlation coefficient val-
ues indicate greater similarity between the model-generated and
kriged fields. Clearly, including both boundary conditions and col-
located observations (case c) performs best for most sample sizes.
Including boundary conditions without collocated observations
(case b) performs slightly worse for most sample sizes. Kriging
without boundary conditions (case a) almost always performs
the worst across all sample sizes.
Case study

The study area is the Vega de Granada aquifer in southern
Spain; an unconfined aquifer comprised mainly of fluvial deposits
(see Castillo (1986), Luque-Espinar (2001), Pardo Igúzquiza and
Chica Olmo (2004), and Pardo Igúzquiza et al. (2009) for additional
information and the results of previous studies). Observed heads
are illustrated in Fig. 16 in a pictogram; higher heads are larger
symbols. Portions of the domain boundary known from previous
geologic and hydrologic studies to correspond to no-flow condi-
tions; they are indicated with blue arrows perpendicular to the
boundary. Pardo Igúzquiza et al. (2009) give the Matérn model
parameters for this dataset, fit using MLMATERN. We used a linear
trend ðL ¼ 2Þ and the isotropic Matérn covariance model with the
parameters a ¼ 2048:2 m; r2 ¼ 641:18 m2, nugget ¼ 0:70357 m2,
and m ¼ 2:1613.

The addition of no-flow boundary condition information
(Fig. 17b) improves the hydrologic quality of the kriged contour
map compared to kriging with heads alone (Fig. 17a). The differ-
ence between the two methods is plotted in Fig. 17c; the difference
(without boundary conditions minus with boundary conditions)
ranges from 36.3 to �12.3 m across the domain shown, although
nearly all large differences are confined to the perimeter of the do-
main. Specific effects of including the no-flow boundaries can be
seen along the southern boundary, especially near the downstream
outlet of the basin. In the interior of the domain, the differences be-
tween the contours for the two methods are slight.
Discussion and conclusions

We present an approach for including both no-flow and con-
stant-head boundary conditions in the estimation of a potential
field in this paper. Our approach produces nearly identical results
to the finite difference approach given elsewhere. The approximate
approach is easier to derive and implement, while the true deriva-
tive approach executes marginally quicker. Fewer covariance func-
tion evaluations are needed in our approach; each rv̂û

ab evaluation
requires four covariance function calls in the finite-difference ap-
proach, and rv̂

ab requires two covariance functions calls (see (7)
and (24)). Because twice-differentiable covariance functions are al-
ready very smooth, the finite-difference approximation to the
derivative is quite accurate (see Fig. 7).

Any covariance function that is at least twice differentiable at
h ¼ 0 can be used in this approach, but when the Gaussian model
is used a nugget must often be included (Goovaerts, 1997). While
the Matérn model is more complicated to implement (requiring
modified Bessel function evaluations) it is the most flexible model
described (Schabenberger and Gotway, 2005, p. 143). The covari-
ance model chosen depends on the application and desired out-
come. Is the goal smoothness (infinitely differentiable models
like Gaussian are good for this), exact replication of observed data
(zero nugget), no extraneous high and low values? (Models that are
not overly-smooth like Mátern are good for this.) Our approach is
general, and while illustrated in terms of heads and gradient
boundary conditions, it would work for any field where a potential
and a gradient-based constitutive law (here Darcy’s law) govern
the process (e.g., Moore, 1964). The examples illustrate the benefits
of including both no-flow and constant-head boundary condition
information in the kriging process. As illustrated in the examples,
constant-head boundary conditions often require collocated head
and boundary observations to force the kriging process to estimate
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heads commensurate with our hydrologic knowledge of the
system.
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